Abstract:
The disclosure relates to a mobile communication system, including: a first transmission path configured to transmit a message according to a first radio access technology; a second transmission path configured to transmit the message according to a second radio access technology; and an encoder configured to encode the message by a code before transmission of the message over the first transmission path and the second transmission path, wherein the code comprises at least two subcodes, and wherein the encoder is configured to encode the message intended for transmission over the first transmission path with a first subcode of the at least two subcodes and to encode the message intended for transmission over the second transmission path with a second subcode of the at least two subcodes.
Abstract:
In embodiments, apparatuses, methods, and storage media may be described for presenting, by a user equipment (UE), a parameter of a network policy to a user, and receiving an indication of the user preference related to that parameter of the network policy. In response to receiving the indication, the UE may select one or more radio links with which the UE should communicatively couple based on the user preference and the network policy. Other embodiments may be described and/or claimed.
Abstract:
Devices and methods of transmit opportunity (TXOP) with continued listen-before-talk (LBT) are generally described. A user equipment (UE) can be configured to perform a single LBT during an LBT scanning instance, to detect availability of an unlicensed wireless channel. Upon detecting availability of the channel, data is encoded for transmission during a TXOP with a TXOP duration. A pause in the transmission of the data is initiated upon expiration of a first time interval of the TXOP. A continuous LBT procedure is performed upon expiration of the pause, to determine a plurality of sensing metrics indicating occupancy of the unlicensed wireless channel. The transmission of the data is resumed during the TXOP for a second time interval, when at least one sensing metric of the plurality of sensing metrics is below a threshold.
Abstract:
Embodiments of an Evolved Node-B (eNB), shared spectrum controller and methods for communication in shared spectrum are generally described herein. A mobile network shared spectrum controller may operate as part of a domain of a mobile network. A public shared spectrum controller may operate externally to the mobile network domain. The mobile network shared spectrum controller and the public shared spectrum controller may operate cooperatively to perform operations of a shared spectrum controller, such as management of secondary usage of shared spectrum by a group of eNBs. The mobile network shared spectrum controller may obfuscate at least a portion of network configuration information from the public shared spectrum controller to enable maintenance of confidential information within the mobile network domain.
Abstract:
A communication device is provided that includes a baseband circuit and a transmitter configured to transmit a first signal and a projected signal. The baseband circuit is configured to determine the projected signal based on an estimated signal state information such that an energy of a shaped projected signal is smaller than an energy of a shaped signal. The estimated signal state information is an estimate of a signal state information based on the first signal and a received signal that is received by a receiver of the second communication device. The shaped projected signal is the projected signal received by the receiver of the second communication device and filtered by a filter of the second communication device. The shaped signal is the received signal filtered by the filter of the second communication device.
Abstract:
A wireless device having a receiver configured to receive, from a second wireless device, information about one or more infrastructure devices having respective coverage areas in which the second wireless device traveled, wherein the information comprises time stamp information and geographical information of the second wireless device when the information was observed; and a processor configured to process the information of the one or more infrastructure devices to determine to which of the infrastructure devices the wireless device is to be handed over.
Abstract:
Various embodiments to enable Spectrum Access System (SAS) interference mitigation options are disclosed herein. In one embodiment, an apparatus is provided. The apparatus includes a memory to store a data sequence, and one or more processing devices coupled to the memory. The processing devices to generate an interference metric associated with a first group and a second group of infrastructure nodes of a Long-Term Evolution (LTE) network infrastructure based on measurement information. The measurement information comprises measurements related to the transmission of data sequences associated with the first group and the second group. Thereupon, configuration settings are determined for infrastructure nodes of the first group and second group based on the generated interference metric. Each configuration setting represents a frequency band and transmission power level for a corresponding infrastructure node to access data in the LTE network infrastructure.
Abstract:
This disclosure relates to a beamforming controller for a beamforming transmitter device, the beamforming controller comprising a control element configured to: activate a first configuration state of a plurality of configuration states for a control channel, each configuration state indicating a beam direction of the control channel; control a beam switching of the control channel from the first configuration state to a second configuration state based on a beam direction of the control channel according to the first configuration state; and retransmit signaling of the beam switching based on a beam direction of the control channel according to both the first and the second configuration state if an acknowledgement to the beam switching is null, not received, missing or received in error.
Abstract:
A system and a method for controlling communication between a network and a terminal device, the method including: selecting a plurality of network access nodes based on each network access node being associated with a distinguishing transmission feature transmission feature; allocating a digital bit pattern to each distinguishing transmission feature; modifying a transmission to the terminal device based on the digital bit pattern; transmitting the transmission to the terminal device; receiving the transmission at the terminal device; identifying the distinguishing transmission feature from the transmission; and processing the transmission based on the digital bit pattern allocated to the distinguishing transmission feature.