Abstract:
An array antenna is disclosed. In one embodiment, the array antenna facilitates transmission of data with amongst fixed radio units. The array antenna includes a number of antenna panels arranged in an hexagonal shape, one or more array control elements controlling the antenna panels, and one antenna routing element controlling the one or more array control elements.
Abstract:
A process for producing papermaking machine clothing having a basic structure, in which powdery and electrically charged polymer material is deposited uniformly on a free surface of the basic structure by means of electric attraction and the polymer material is then activated thermally and/or chemically, so that the polymer material bonds firmly to the basic structure.
Abstract:
A communication system formed by a private wireless network that can be used with public wireless networks using a public wireless protocol, such as GSM, and typically includes public networks, such as PSTN, ISDN and the Internet, using a wired-packet protocol, such as IP. The private network also typically includes a local area network (LAN) and the private network typically connects to the public networks using the wired-packet protocol, such as IP. The public and private wireless networks operate with the same public wireless protocol, such as GSM, and the private wireless network additionally operates with the wired-packet protocol, such as IP. In this environment, multiple wireless cells are present and inter-cell handovers employ multiple protocols including the wired-packet protocol.
Abstract:
A method of manufacturing papermachine clothing including electrostatically charging selected areas of an electrostatically chargeable surface. Applying a dry material to the surface, wherein the dry material adheres to the selected areas, then removing non-adhering material. Melting the dry material adhering to the selected areas, and applying the molten dry material to an extended surface to form a planar article. The instant abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way.
Abstract:
A demodulator determines a time of arrival of an access signal. Access signals that do not result in a time of arrival are discarded. Upon obtaining a time of arrival, the access signal is equalized and a training sequence of bits in the equalized access signal is compared to a reference sequence of bits. A burst confidence metric is obtained in the comparison by summing the number of matching bits. The access signal is discarded if the burst confidence metric is less than a threshold number. A decoder performs a parity check on access signals that have a burst confidence metric exceeding the threshold number. The access signal is discarded if the parity check fails. Upon passing the parity check, the access signal is re-encoded and compared to its received version. If a number of errors from the comparison exceeds a bit error threshold, the access signal is discarded.
Abstract:
A technique for implementing a flattened Layer 3 stack model within a Global System for Mobile (GSM) communication system so that a centralized multiplex function associated with certain functions handles messages. The multiplex function dispatches radio resource (RR), mobility management (MM), or Connection Management (CM) function messages directly to the respective functional layers without first requiring such messages to pass through a stack. In the preferred arrangement, the multiplex function sub-L3 handles only uplink messages, allowing downlink messages to travel through the sub-layer stack without employing any bridging entity. The multiplex function can run independently of any of the other functions in Layer 3 or can be implemented as part of the message passing part of the Layer 2 running body so that the Layer 2 messages are routed directly to a respective RR, MM, or CM function. The flattened protocol stack permits time-sensitive messages related to location update, handover, or cell reselection and other time-critical messages to be handled more efficiently.
Abstract:
A private multiplexing cellular network for facilitating cellular communication for private mobile stations (MS's), public MS's, and hybrid MS's. The private multiplexing cellular network includes a multiplexing circuit coupled to its radio subsystem. The multiplexing circuit is in turn coupled to two A-interfaces: a private A-interface for coupling the private radio subsystem with the private Mobile Switching Center (MSC), and a public A-interface for coupling the private radio subsystem with the public MSC. Intelligence is also provided with the multiplexing circuit to decide, based on a number of parameters, whether the public MSC or the private MSC should handle a given service request.
Abstract:
A private multiplexing cellular network for facilitating cellular communication for private mobile stations (MS's), public MS's, and hybrid MS's. The private multiplexing cellular network includes a multiplexing circuit coupled to its radio subsystem. The multiplexing circuit is in turn coupled to two A-interfaces: a private A-interface for coupling the private radio subsystem with the private Mobile Switching Center (MSC), and a public A-interface for coupling the private radio subsystem with the public MSC. Intelligence is also provided with the multiplexing circuit to decide, based on a number of parameters, whether the public MSC or the private MSC should handle a given service request.