Abstract:
A system for sterilizing a drug delivery device includes a drug delivery device having a first self-healing seal configured to seal a fluid reservoir disposed within the drug delivery device. A sealable container is configured to receive the drug delivery device therein. The sealable container has a base portion and a cover portion. The cover portion has a second self-healing seal positioned to align with the first self-healing seal when the drug delivery device is disposed within the sealable container. A fill port includes a fill path, the fill path being configured to pass through the first and second self-healing seals to fluidly couple the fill port to the reservoir of the drug delivery device. Other systems, methods, and devices of sterilization are also disclosed.
Abstract:
Systems and methods for monitoring an operational state and/or a fill status of a drug container of a drug delivery device are provided. The drug container can hold a liquid drug. A plunger can be positioned within the drug container. A drive system can advance the plunger to expel the liquid drug from the container. A monitoring system can detect a movement and/or a position of the plunger and/or any component coupled to the plunger. The detection can enable determination of an amount of liquid drug that has been expelled and/or an amount of liquid drug remaining in the drug container. Dosing rates, flow rates, and dosage completion can also be determined.
Abstract:
The present disclosure relates generally to the field of drug delivery. In particular, the present disclosure relates to a drug delivery system that includes a sealed and sterile fluid path attached to a drug-loaded container. The disclosure further relates to methods for sterilizing a portion of the drug delivery system without exposing the drug-loaded container to harmful sterilization parameters.
Abstract:
A fluid delivery device comprising a fluid reservoir; a transcutaneous access tool fluidly coupled to the fluid reservoir; and a drive mechanism for driving fluid from the reservoir, the drive mechanism comprising a plunger received in the reservoir; a leadscrew extending from the plunger; a nut threadably engaged with the leadscrew; a drive wheel; and a clutch mechanism coupled to the drive wheel, wherein the clutch mechanism is configured to allow the nut to pass through when disengaged and is configured to grip the nut when engaged such that the drive wheel rotates the nut to advance the drive rod and the plunger into the reservoir.
Abstract:
A needle mechanism module for automatically inserting a fluid path into a patient for drug delivery is provided. The needle mechanism module can be a component of a wearable drug delivery device. The needle mechanism module can insert a needle and cannula into the patient responsive to activation of the drug delivery device by a user. After insertion, the needle can be automatically retracted, leaving only the cannula in the patient. As a result, discomfort of the user is reduced.
Abstract:
A wearable drug delivery device that can deliver a liquid drug stored in a container to a patient is provided. The container can be a prefilled cartridge that can be loaded into the drug delivery device by the patient or that can be preloaded within the drug delivery device when provided to the patient. A sealed end of the container is pierced to couple the stored liquid drug to a needle conduit that is coupled to a needle insertion component that provides access to the patient. A drive system of the drug delivery device can expel the liquid drug from the cartridge to the patient through the needle conduit. The drive system can include a spring coupled to a plurality of force transfer elements. The force transfer elements can have a variety of shapes and configurations.
Abstract:
Disclosed are examples of valve systems and methods of operating the respective valve systems. An example valve system may include a valve body, an inlet component, an outlet component and a valve tube. The valve body may include a first void and a second void. The inlet component may be coupled to the first void and the outlet component may be coupled to the second void. The valve tube may include a side port and may be positioned through the valve body and coupled to the first void, the inlet component, the second void, and the outlet component. Other valve system examples may include including a valve body, a first septum, a second septum, a first piston, a second piston and a tube. The disclosed methods describe the interaction of the respective components of the respective valve system example.
Abstract:
Disclosed is a fluid delivery device including a fluid reservoir and a transcutaneous access tool fluidly coupled to the fluid reservoir, wherein the transcutaneous access tool includes a needle or a trocar. The fluid delivery device may further include a transcutaneous access tool insertion mechanism for deploying the transcutaneous access tool, wherein the insertion mechanism is configured to insert and retract the needle/trocar in a single, uninterrupted motion.
Abstract:
Disclosed are examples of a device, a system, methods and computer-readable medium products operable to implement functionality to determine and respond to a purpose of a meal. An algorithm or application may receive data that may include data related to a meal purpose from data sources and determine whether any of the data received from the plurality of data sources was received from a direct data source or an indirect data source. The data may be evaluated to determine a purpose of the meal. Based on the results of the evaluation, instructions may be generated to provide an appropriate response based on the determined purpose of the meal. The generated instructions to provide the appropriate response based on the determined purpose of the meal may be output.
Abstract:
A multiple pulse volume shuttle pump powered by a shape memory alloy (SMA) wire is disclosed. In some embodiments, a shuttle pump system may include a pump chamber, a valve operable with the pump chamber, and a wire coupled to a valve shaft of the valve for controlling a position of the valve. The shuttle pump system may further include a pin disposed within an inset pathway of a cam, wherein the pin is moveable between multiple positions of the inset pathway in response to actuation of the valve shaft.