Abstract:
Systems, apparatuses, and methods of performing in a computer processor broadcasting data in response to a single vector packed broadcasting instruction that includes a source writemask register operand, a destination vector register operand, and an opcode. In some embodiments, the data of the source writemask register is zero extended prior to broadcasting.
Abstract:
Embodiments of systems, apparatuses, and methods for performing in a computer processor mask bit compression in response to a single mask bit compression instruction that includes a source writemask register operand, a destination writemask register operand, and an opcode are described.
Abstract:
Embodiments of systems, methods, and apparatuses for heterogeneous computing are described. In some embodiments, a hardware heterogeneous scheduler dispatches instructions for execution on one or more plurality of heterogeneous processing elements, the instructions corresponding to a code fragment to be processed by the one or more of the plurality of heterogeneous processing elements, wherein the instructions are native instructions to at least one of the one or more of the plurality of heterogeneous processing elements.
Abstract:
Systems, methods, and apparatuses relating to a configurable accelerator having dataflow execution circuits are described. In one embodiment, a hardware accelerator includes a plurality of dataflow execution circuits that each comprise a register file, a plurality of execution circuits, and a graph station circuit comprising a plurality of dataflow operation entries that each include a respective ready field that indicates when an input operand for a dataflow operation is available in the register file, and the graph station circuit is to select for execution a first dataflow operation entry when its input operands are available, and clear ready fields of the input operands in the first dataflow operation entry when a result of the execution is stored in the register file; a cross dependence network coupled between the plurality of dataflow execution circuits to send data between the plurality of dataflow execution circuits according to a second dataflow operation entry; and a memory execution interface coupled between the plurality of dataflow execution circuits and a cache bank to send data between the plurality of dataflow execution circuits and the cache bank according to a third dataflow operation entry.
Abstract:
Embodiments detailed herein relate to matrix (tile) operations. For example, decode circuitry to decode an instruction having fields for an opcode and a memory address; and execution circuitry to execute the decoded instruction to set a tile configuration for the processor to utilize tiles in matrix operations based on a description retrieved from the memory address, wherein a tile a set of 2-dimensional registers are discussed.
Abstract:
Embodiments detailed herein relate to matrix (tile) operations. For example, decode circuitry to decode an instruction having fields for an opcode and a memory address, and execution circuitry to execute the decoded instruction to store configuration information about usage of storage for two-dimensional data structures at the memory address.
Abstract:
Embodiments detailed herein relate to systems and methods to store a tile register pair to memory. In one example, a processor includes: decode circuitry to decode a store matrix pair instruction having fields for an opcode and source and destination identifiers to identify source and destination matrices, respectively, each matrix having a PAIR parameter equal to TRUE; and execution circuitry to execute the decoded store matrix pair instruction to store every element of left and right tiles of the identified source matrix to corresponding element positions of left and right tiles of the identified destination matrix, respectively, wherein the executing stores a chunk of C elements of one row of the identified source matrix at a time.
Abstract:
An apparatus and method for performing dual concurrent multiplications of packed data elements. For example one embodiment of a processor comprises: a decoder to decode a first instruction to generate a decoded instruction; a first source register to store a first plurality of packed byte data elements; a second source register to store a second plurality of packed byte data elements; execution circuitry to execute the decoded instruction, the execution circuitry comprising: multiplier circuitry to concurrently multiply each of the packed byte data elements of the first plurality with a corresponding packed byte data element of the second plurality to generate a plurality of products; adder circuitry to add specified sets of the products to generate temporary results for each set of products; zero-extension or sign-extension circuitry to zero-extend or sign-extend the temporary result for each set to generate an extended temporary result for each set; accumulation circuitry to combine each of the extended temporary results with a selected packed data value stored in a third source register to generate a plurality of final results; and a destination register to store the plurality of final results as a plurality of packed data elements in specified data element positions.
Abstract:
Disclosed embodiments relate to computing dot products of nibbles in tile operands. In one example, a processor includes decode circuitry to decode a tile dot product instruction having fields for an opcode, a destination identifier to identify a M by N destination matrix, a first source identifier to identify a M by K first source matrix, and a second source identifier to identify a K by N second source matrix, each of the matrices containing doubleword elements, and execution circuitry to execute the decoded instruction to perform a flow K times for each element (M,N) of the identified destination matrix to generate eight products by multiplying each nibble of a doubleword element (M,K) of the identified first source matrix by a corresponding nibble of a doubleword element (K,N) of the identified second source matrix, and to accumulate and saturate the eight products with previous contents of the doubleword element (M,N).
Abstract:
Embodiments detailed herein relate to systems and methods to zero a tile register pair. In one example, a processor includes decode circuitry to decode a matrix pair zeroing instruction having fields for an opcode and an identifier to identify a destination matrix having a PAIR parameter equal to TRUE; and execution circuitry to execute the decoded matrix pair zeroing instruction to zero every element of a left matrix and a right matrix of the identified destination matrix.