Abstract:
Asphalt and elastomeric polymer compositions crosslinked with mixed polythiomorpholines or at least one alkyl polysulfide can give polymer modified asphalts (PMAs) with improved properties and/or reduced H2S evolution. When at least one alkyl polysulfide is used to completely or partially replace conventional crosslinkers such as S or MBT, mercaptobenzimidazole (MBI) may be optionally used as a co-crosslinker. The use of mixed polythiomorpholines as crosslinkers provide PMAs with better low temperature profiles (BBR m-values). The use of at least one alkyl polysulfide crosslinker gives PMAs with improved PAV-aged DSR results, and reduced H2S evolution. The use of at least one alkyl polysulfide crosslinker together with MBI may give PMAs with improved PAV DSR Fail Temperatures.
Abstract translation:用混合多硫代吗啉或至少一种烷基多硫化物交联的沥青和弹性体聚合物组合物可以得到具有改进性能和/或降低的H 2 S 2 S演化的聚合物改性沥青(PMA)。 当使用至少一种烷基多硫化物来完全或部分替代常规交联剂如S或MBT时,巯基苯并咪唑(MBI)可以任选地用作共交联剂。 使用混合的聚硫代吗啉作为交联剂为PMA提供了更好的低温谱(BBR m值)。 使用至少一种烷基多硫化物交联剂使得PMA具有改进的PAV老化的DSR结果和降低的H 2 S 2 S进化。 使用至少一种烷基多硫化物交联剂与MBI一起可以使PMA具有改进的PAV DSR失败温度。
Abstract:
An ultraviolet spectroscopic system and method is described that allows accurate, real-time, analysis of an ultraviolet absorbing gas species (e.g., nitric oxide) in vehicle exhaust independent of the air/fuel ratio (i.e., changing hydrocarbon concentrations). The method, which accurately accounts for the continuously changing background, allows the gas species to be measured selectively and accurately in undiluted vehicle exhaust with portable hardware that can be used on-board a vehicle.
Abstract:
It has been discovered that a synthetic flux oil can contain and deliver asphaltites, such as gilsonite, more easily and readily to an asphalt to improve its properties. The synthetic flux oil includes the asphaltite and a carrier oil. Depending on the nature of the carrier oil, the synthetic flux oil may or may not need to be heated during mixing and incorporation into the asphalt.
Abstract:
In methods of preparing asphalt and elastomeric polymer compositions such as polymer modified asphalt (PMA), it has been discovered that the compatibility can be improved by adding excess amounts of certain organic and inorganic metal salts beyond the proportions normally used. Suitable metal salts may be metal oxides that include, but are not necessarily limited to, zinc oxide, calcium oxide, and the like. The method of the invention also permits asphalt modified with other polymers such as ground tire rubber (GTR) to have improved compatibility. Additionally, the use of excess amounts of these metal salts helps control gel formation.
Abstract:
A refrigerator shelving system includes an item retainer for securing items carried on a shelf, a mounting member for releasably securing a shelf to a cabinet of the refrigerator, and a spill tray carried by the shelf. The item retainer is movable between a first position and a second position such that when in the first position, a first side upwardly extends from the shelf and defines a fence and when in the second position the first side is parallel and adjacent to an upper surface of the shelf The shelf mounting member includes a first portion rotatably interconnected to a lateral side of the shelf and a second portion for selectively engaging a horizontal slot of a cabinet of the refrigerator. The mounting member is rotatable from a first position to a second position to engage the second portion with the horizontal slot. The spill tray includes a main body portion and a plurality of mounting elements. The main body portion is disposed parallel to and substantially adjacent a lower side of the shelf and is positioned completely below the shelf. The plurality of mounting elements releasably engage the shelf.
Abstract:
The present invention provides a method for preparing an asphalt and thermoplastic elastomer composition. The process comprises heating an asphalt cut in a stirred tank to a temperature sufficient to allow the stirring of the asphalt in the tank. A thermoplastic elastomer or rubber is added to the asphalt while continuing to stir the asphalt. The mixture is stirred at a speed and for a period of time sufficient to increase the distribution of the elastomer into the asphalt. The stirring speed is reduced and the temperature is increased to add crosslinking agents to the tank. Stirring is continued for a period of time sufficient to improve the distribution of the crosslinking agent dispersion in the asphalt. Crosslinking agents include compositions of mercaptobenzothiazole, zinc oxide and elemental sulfur; compositions of mercaptobenzothiazole, zinc oxide, and mixed polythiomorpholine; and compositions of zinc 2-mercaptobenzothiazole and dithiodimorpholine.
Abstract:
A method for the oxidative coupling of hydrocarbons, such as the oxidative coupling of methane to toluene, includes providing an oxidative catalyst inside a reactor, and carrying out the oxidative coupling reaction under a set of reaction conditions. The oxidative catalyst includes (A) at least one element selected from the group consisting of the Lanthanoid group, Mg, Ca, and the elements of Group 4 of the periodic table (Ti, Zr, and Hf); (B) at least one element selected from the group consisting of the Group 1 elements of Li, Na, K, Rb, Cs, and the elements of Group 3 (including La and Ac) and Groups 5-15 of the periodic table; (C) at least one element selected from the group consisting of the Group 1 elements of Li, Na, K, Rb, Cs, and the elements Ca, Sr, and Ba; and (D) oxygen.
Abstract:
A method for the oxidative coupling of hydrocarbons, such as the oxidative coupling of methane to toluene, includes providing an oxidative catalyst inside a reactor, and carrying out the oxidative coupling reaction under a set of reaction conditions. The oxidative catalyst includes (A) at least one element selected from the group consisting of the Lanthanoid group, Mg, Ca, and the elements of Group 4 of the periodic table (Ti, Zr, and Hf); (B) at least one element selected from the group consisting of the Group 1 elements of Li, Na, K, Rb, Cs, and the elements of Group 3 (including La and Ac) and Groups 5-15 of the periodic table; (C) at least one element selected from the group consisting of the Group 1 elements of Li, Na, K, Rb, Cs, and the elements Ca, Sr, and Ba; and (D) oxygen.
Abstract:
A process is disclosed for making styrene or ethylbenzene by reacting toluene with a C1 source that is selected from the group consisting of methanol, formaldehyde, formalin, trioxane, methylformcel, paraformaldehyde, methylal, and combinations thereof.
Abstract:
A metal-modified alkylation catalyst including a metal/zeolite is provided where the metal is one or two selected from the group consisting of yttrium and a rare earth of the lanthanide series other than cerium. Where two metals are used, one may be Ce or La. The metal-promoted zeolite is useful as a molecular sieve aromatic alkylation catalyst for the production of ethylbenzene by the ethylation of benzene in the liquid phase or critical phase. An alkylation product is produced containing ethylbenzene as a primary product with the attendant production of heavier alkylated by-products of no more than 10-60 wt % of the ethylbenzene.