Abstract:
The invention relates to a novel electrically programmable and erasable memory cell.The cell comprises a single transistor, which is a floating gate transistor and has no selection transistor. Means are provided for establishing a high capacitive coupling between the drain (12) and the floating gate (18). The capacitive coupling between the source (10) and the floating gate is low, as is normally the case. Preferably, the control gate (22) only partly covers the floating gate (18). Another part of the floating gate is covered by a semiconductor layer (26) connected to the drain. It is the latter layer which establishes the high capacitive coupling according to the invention. Programming can then take place by the Fowler-Nordheim effect with the source under high impedance, i.e. without hot electron effect.
Abstract:
To avoid differentiation, in manufacture, between the random-access memory cells and read-only memory cells of the same memory array, the memory cells are all made by the same technology. These memory cells employ essentially floating gate transistors. The random-access memory cells are programmed, in a stand way, by injecting or not electronic charges in the floating gates of the transistors. The read-only memory cells are put in a programmed or an unprogrammed state by the selective implantation of impurities or not in the conduction channels of the floating gate transistors of these memory cells. There is an improved concealment of the content, which is designed to remain concealed, of these memory cells, at the same time, the conditions for making prototypes to order are improved.
Abstract:
In an integrated circuit provided with a memory including redundancy elements and fuses for switching-over to the redundancy elements, a supplementary terminal for receiving a high voltage is connected to all the fuses and to a circuit which generates low voltage at the time of programming of the memory and which is capable of presenting high impedance when the high voltage is applied, with the result that the entire current flows through the fuses selected for blowout.
Abstract:
The present invention relates to a method for programming a memory cell having a determined transconductance curve. The programming of the memory cell comprises a series of programming cycles each comprising a step of verifying the state of the memory cell. According to the present invention, the verify step comprises a first read of the memory cell with a first read voltage greater than a reference threshold voltage, and a second read of the memory cell with a second read voltage lower than or equal to the reference threshold voltage. The memory cell is considered not to be in the programmed state if first- and second-read currents flowing through the memory cell are above determined thresholds, and programming voltage pulses are applied to the memory cell while the latter is not in the programmed state. Application in particular to the programming of Flash memory cells.
Abstract:
The present invention relates to a method for programming a memory cell having a determined transconductance curve. The programming of the memory cell comprises a series of programming cycles each comprising a step of verifying the state of the memory cell. According to the present invention, the verify step comprises a first read of the memory cell with a first read voltage greater than a reference threshold voltage, and a second read of the memory cell with a second read voltage lower than or equal to the reference threshold voltage. The memory cell is considered not to be in the programmed state if first- and second-read currents flowing through the memory cell are above determined thresholds, and programming voltage pulses are applied to the memory cell while the latter is not in the programmed state. Application in particular to the programming of Flash memory cells.
Abstract:
The present invention relates to a method for programming a memory cell having a determined transconductance curve. The programming of the memory cell comprises a series of programming cycles each comprising a step of verifying the state of the memory cell. According to the present invention, the verify step comprises a first read of the memory cell with a first read voltage greater than a reference threshold voltage, and a second read of the memory cell with a second read voltage lower than or equal to the reference threshold voltage. The memory cell is considered not to be in the programmed state if first- and second-read currents flowing through the memory cell are above determined thresholds, and programming voltage pulses are applied to the memory cell while the latter is not in the programmed state. Application in particular to the programming of Flash memory cells.
Abstract:
This invention relates to a method for programming a Flash-EPROM type memory (1) comprising words of memory cells arranged in rows (23) and columns (31), in which a floating-gate transistor (7) acts as a storage device, the floating-gate transistors of the memory cells (2-9) in the same word (10) have their control gate connected to the same word line connection (30) and their source connected to the same main electrode (29) of a selection transistor (26), the other main electrode (28) of which is connected to a vertical word source connection (25), in which M memory cells (2, 2b) are programmed simultaneously in N different words (10, 200) during a single programming cycle, where M is less than the number P of memory cells in a word, and where M, N and P are integer numbers.
Abstract:
In integrated circuits, to modify the operation of the charge pumps or voltage step-up circuits, they are sent a variable frequency signal at the input with the aim of breaking the regularity of the pulse train that enters the charge pump. This limits the risks of entry into resonance and limits radiation at a given frequency. The variable frequency signal is typically produced by a logic circuit and by a main oscillator whose transmission of certain pulses is masked by the combined action of different masking signals. The duty cycle ratios of the masking signals are less than that of the signal from the main oscillator. Such duty cycle ratios are preferably produced following the passage of a signal to a lower frequency than that of the signal of the main oscillator in a circuit for the detection of high transitions.
Abstract:
An electrically programmable non-volatile memory organized in n-bit words includes a generator circuit to produce a verification voltage to perform a verification of a word in the memory. The generator circuit adjusts the verification voltage as a function of an information element that corresponds to the word to be verified.
Abstract:
To improve the reading time of a memory, it is determined when a word line will be completely charged by making an additional memory cell, connected to an additional bit line, at the end of this word line. The additional memory cells are all in a programming state such that they enable the detection of a read current positively. Furthermore, by programming these cells insufficiently, they become conductive before the normal cells of the memory array. This instant is used to activate the reading of the cells of the memory array.