Abstract:
Embodiments of the invention generally include multicomponent catalyst systems, polymerization processes and reactor blends formed by the processes. The multicomponent catalyst system generally includes a first catalyst component selected from an isotactic directing metallocene catalyst. The multicomponent catalyst system further includes a second syndiotactic directing metallocene catalyst component.
Abstract:
This invention proposes an automatic retransmission controller and a retransmission block recombination apparatus, of which the automatic retransmission controller comprises a responsive reception unit that receives the information fed back from the receiver; a retransmission judging unit that determines coded data blocks to be retransmitted according to the information received by the responsive reception unit; and a data acquisition unit that acquires a part of data in each of the coded data blocks to be retransmitted judged by the retransmission judging unit for recombination to form a retransmission coded block, when the number of the coded data blocks to be transmitted is more than one.
Abstract:
A wireless communication network includes a central node and a plurality of sub-nodes including relay nodes and terminal nodes. A method for adaptively selecting a route for communications in the network includes: generating a global routing table of the network based on a predetermined criterion, by the central node independently or in cooperation with a part of the relay nodes; generating a local routing table of each of the sub-nodes based on the global routing table, and informing the local routing tables to the respective sub-nodes to store the local routing tables in the respective sub-nodes, by the central node independently or in cooperation with a part of the relay nodes, the local routing table including paths from the corresponding sub-node to adjacent nodes; and adaptively selecting, by the sub-node, a path from the local routing table thereof for communications according to a predetermined rule.
Abstract:
A wireless communication apparatus, includes: a collision locating section for detecting a collision and determining a collision area in which the collision occurs, according to route requests received through an ad-hoc network based on an on-demand driving routing protocol, a relay node selecting section for selecting a relay node which is located outside the collision area and turn-off of which will not influence connectivity in the ad-hoc network, and a relay node controlling section for controlling the selected relay node to turn off in response to the selection of the relay node and keeping the selected node off if the collision in the collision area is alleviated or eliminated after the selected relay node is turned off.
Abstract:
This disclosure relates a method and apparatus for generating pre-coding matrix codebook. The method for generating pre-coding matrix codebook, comprising: acquiring a universal set of pre-coding matrixes in a first format; acquiring a universal set of pre-coding matrixes in a second format; selecting a first predetermined number of pre-coding matrixes in the first format from the universal set of pre-coding matrixes in the first format; and selecting a second predetermined number of pre-coding matrixes in the second format from the universal set of pre-coding matrixes in the second format, according to the selected first predetermined number of pre-coding matrixes in the first format.
Abstract:
A User equipment selecting first user equipment in a mode of precoding transmission and second user equipment in a mode of diversity transmission; a parameter determining a modulation mode, the number of transmission layers and a precoding matrix according to channel quality information, precoding matrix information and number of transmission layers sent from the first user equipment and channel quality information and number of transmission layers sent from the second user equipment; according to the modulation mode and the number of transmission layers, generating first and second symbol sequence from first and second source data; hierarchically modulating the first and the second symbol sequence to generate a mixed symbol sequence; layer mapping and precoding for the mixed symbol sequence to generate transmission signals; and transmitting the precoding matrix and the number of transmission layers to the second user equipment; sending the transmission signals to the first and second user equipments.
Abstract:
Propylene polymerization processes, polymers and films formed therefrom are described herein. The propylene polymerization processes generally include contacting propylene and an amount of ethylene with a first metallocene catalyst and a second metallocene catalyst within a polymerization reaction vessel to form a propylene based polymer, wherein the amount is an amount effective to form the propylene based polymer including from about 2 wt. % to about 6 wt. % ethylene, the second metallocene catalyst is capable of incorporating a greater amount of ethylene into the propylene based polymer than the first metallocene catalyst and wherein the first metallocene catalyst is capable of forming a propylene/ethylene random copolymer exhibiting a melting temperature that is greater than that of a propylene/ethylene random copolymer formed from the second metallocene catalyst.
Abstract:
The invention is directed to a metallocene catalyst system comprising an inert silica support having pores with a peak pore volume of greater than about 0.115 mL/g at a pore diameter between about 250 Angstroms and about 350 Angstroms, and an alumoxane activator, with the metallocene being bound substantially throughout the support. The activator is grafted to the support in a solvent at a reflux temperature of toluene to obtain an aluminoxane on silica, and a metallocene component is added to make a MCS having a metallocene loading of about 2 wt %. This facilitates the production of metallocene catalyst systems having increased catalytic activity than previously recognized that is at least about 20 percent higher than the catalytic activity for a metallocene loading of about 1 wt % where the activator is grafted to the support at room temperature.
Abstract:
A system and method for region-of-interest-based bit-allocation scheme for video coding is provided. A method for encoding an image sequence of inter-frames and intra-frames includes grouping the inter-frames and the intra-frames in at least one group of pictures (GOP), and performing a frame-level bit-allocation to inter-frames and the intra-frames in the GOP. For each frame of the inter-frames and the intra-frames in the GOP, the method also includes partitioning the frame into a plurality of macroblocks, identifying macroblocks in the plurality of macroblocks as having regions of interest (ROI), and performing a macroblock level bit-allocation for the frame based on macroblocks identified as having ROI. The method further includes encoding the image sequence based on the bit-allocations, thereby producing an encoded image sequence, and outputting the encoded image sequence.
Abstract:
The present invention discloses a transmission resource assignment method for response signals, a feedback method of response signals and a processing method of response signals. The transmission resource assignment method for response signals according to the present invention includes the steps of: determining a list of mobile stations required to transmit response signals currently; determining the number of the response signals required to be transmitted by each mobile station; and assigning a frequency-domain sequence and a time-domain sequence for each mobile station to transmit the response signals; wherein for multiple mobile stations assigned with the same frequency-domain sequence, the time-domain sequence assigned to the mobile station required to transmit multiple response signal groups is divided into multiple subsequences to be used to transmit the multiple response signal groups of the mobile station respectively; and parts of the time-domain sequences of different mobile stations corresponding to the multiple subsequences are orthogonal to each other respectively.