摘要:
An application persistence system for improving wireless application resource efficiency is provided. The application persistence system comprises a persistence-point definition module for defining conditions that trigger persisting application data, a persistence-point analysis module for identifying efficient and reliable persistence points and a persistence points enforcement module for enforcing persistence points at application runtime. A method of improving wireless application resource efficiency is also provided. The method comprises the steps of defining conditions that trigger persisting application data, identifying efficient and reliable persistence points, defining a persistence mode flag in an application's profile, and enforcing persistence points at application runtime.
摘要:
It is desirable to drive down the complexity involved in developing the wireless application by reducing the need to do any explicit coding, as well as reducing device resources utilized by the application when provisioned. Having an intelligent wireless device runtime environment (Device Runtime) that provides a set of basic services to manage the wireless application as a series if application components, and their interactions, can simplify the development effort and reduce resource allocation. The wireless application is described as a set of components. The data domain for this category of applications is defined using atomic data components. The communication between the device and a server is defined using atomic message components. Both message and data components are described in metadata using a structured definition language such as XML. The relationships between the message and data components are embedded in the XML definitions in the form of message/data mappings. Typically, outgoing messages are derived from some underlying data component and incoming messages affect the current state (or data representation) of the application. It is therefore apparent that the metadata defined mapping relationship is preferable between the expression of data and message components.
摘要:
A wireless application GUI is described as a set of atomic screen components. The application screens are defined through a structured language such as XML, HTML or XHTML and are expressed as a collection of nested layouts and UI controls. Representation of these visual components is facilitated through the use of an intelligent Device Runtime framework that provides a set of services for screen presentation, management and user interaction. The designation of the screen components provides for an interactive and dynamic UI, and provides for delegation of some of the user interface management to the intelligent Device Runtime framework. The screen components utilize conditional controls in the wireless application definition. Conditional controls are dynamic screen elements that determine their appearance or behavior by virtue of satisfying a particular condition. Conditional controls include so-called driving (primary) and dependent (secondary) controls that modify application runtime screen behavior.
摘要:
A system and method for developing a standard data component for coupling with a plurality of components of a component-based application to access a stored data entity of a non-component-based native application, the applications for executing in a runtime environment of a device. The system and method comprises an application module configured for storing a model of the component-based application including features of data and message component definitions expressed in a structured definition language. Also included is a native module configured for storing properties of the data entity of the native application and a standard module for generating the standard data component definition based on the features of the component-based application and the properties of the data entity of the native application. The standard data component definition is expressed in the structured definition language.
摘要:
A method for introducing a service to a runtime environment of a wireless device, the service for supporting at least one application in the runtime environment, the wireless device communicating over a wireless network with a data processing system, the method comprising: configuring the service as a system application, wherein the system application is adapted to: communicate system and application level messaging with the data processing system and at least one other service in the runtime environment; and, communicate application level messaging with the at least one application in the runtime environment; and, installing the system application in the runtime environment as an application.
摘要:
A device runtime environment is provided for execution on a computing device. The device runtime environment provides an intelligent container for an application at runtime and comprises a plurality of services in communication with each other. The plurality of services a data manager, a screen manager, a communication service and a script interpreter. The data manager manages data components of the application including manipulation and persistence in a database of the data components. The screen manager managing screen components of the application and renders an output for display on a screen of the computing device. The communication service sends messages to external resources and receives and manages messages sent from external resources in accordance with corresponding message components. The script interpreter dynamically interprets script embedded in at least one of the data components, screen components, and message components and relays the interpreted output to the corresponding component manager for implementation. A method for implementing an application on the device in accordance with the above and a computer readable memory for storing instruction to implement the method are also provided.
摘要:
A device runtime environment is provided for execution on a computing device. The device runtime environment provides an intelligent container for an application at runtime and comprises a plurality of services in communication with each other. The plurality of services a data manager, a screen manager, a communication service and a script interpreter. The data manager manages data components of the application including manipulation and persistence in a database of the data components. The screen manager managing screen components of the application and renders an output for display on a screen of the computing device. The communication service sends messages to external resources and receives and manages messages sent from external resources in accordance with corresponding message components. The script interpreter dynamically interprets script embedded in at least one of the data components, screen components, and message components and relays the interpreted output to the corresponding component manager for implementation. A method for implementing an application on the device in accordance with the above and a computer readable memory for storing instruction to implement the method are also provided.
摘要:
A notification service and correspondingly configured wireless device for providing asynchronous communications over a communication network for an application of the wireless device in communication with a selected service. The selected service has a source schema definition including an output notification definition associated with a correlation ID. The notification service comprises a reverse schema definition of the source schema definition such that the reverse schema definition includes an input notification operation definition corresponding to the output notification definition. The input definition is associated with the correlation ID and a parameter list of the output definition. The output definition is for defining an output message of the selected source that corresponds to an input message of the notification service defined by the input definition. The notification service has a first communication port adapted for receiving the output message of the selected service as the input message to the notification service, wherein the messages are adapted to include the correlation ID for identifying the network address of the wireless device. The information contents of the output message of the selected source are transmitted as an asynchronous communication to the application of the wireless device identified by the correlation ID.
摘要:
A notification service and correspondingly configured wireless device for providing asynchronous communications over a communication network for an application of the wireless device in communication with a selected service. The selected service has a source schema definition including an output notification definition associated with a correlation ID. The notification service comprises a reverse schema definition of the source schema definition such that the reverse schema definition includes an input notification operation definition corresponding to the output notification definition. The input definition is associated with the correlation ID and a parameter list of the output definition. The output definition is for defining an output message of the selected source that corresponds to an input message of the notification service defined by the input definition. The notification service has a first communication port adapted for receiving the output message of the selected service as the input message to the notification service, wherein the messages are adapted to include the correlation ID for identifying the network address of the wireless device. The information contents of the output message of the selected source are transmitted as an asynchronous communication to the application of the wireless device identified by the correlation ID.
摘要:
A method of application waste management in a wireless device is provided. The method comprised a first low-memory event. Deleting a first set of data records incrementally until event is cleared or no more records are present. Determining a second low-memory event when memory is still low. Executing a clean-up script to mark additional data records for deletion. Deleting the second set of data records until the second low-memory condition are cleared or no more records are present.