Abstract:
The present invention discloses a wafer level test structure and a test method; in which, a heating plate is formed on the wafer for heating a structure to be tested positioned above or adjacent to the heating plate. The heating plate produces heat by electrically connecting to a current. Thus, the heat provided by the heating plate and the electric input/output into/from the structure to be tested are controlled separately and not influenced each other.
Abstract:
A plasma arcing sensor is used to increase the frequency of plasma arcing by way of neutralization of positive charges and negative charges. When the plasma arcing can be predicted, the process parameters to prevent from the plasma arcing can be carried out. The plasma arcing sensor comprises a top conductive layer formed over a substrate. A conductive layer is disposed between the top conductive layer and the wafer where the conductive layer and the top conductive layer are electrically isolated with dielectrics.
Abstract:
A semiconductor fabrication method that enhances the ESD (electrostatic discharge) protection capability of an ESD protective device provided in an integrated circuit such as a mask-programmed ROM, allows the mask-programmed ROM to be downsized while still providing adequate ESD protection capability, and allows the mask-programmed ROM to be fabricated in a smaller size, while nonetheless providing adequate ESD protection capability for the internal circuit. Initially, a mask for the ion implantation process for the ROM is prepared. The mask is patterned additionally with a plurality of strips used to define breakdown voltage controlling areas in the ESD protective device. Then, the ion implantation process is performed through the mask so as to form the breakdown voltage controlling areas each beneath the drain of the n-type CMOS transistor. The breakdown voltage controlling areas are heavily doped, thereby reducing the breakdown voltage at the junction between the drain and the p-well in the n-type CMOS transistor. This enhances the ESD protection capability of the integrated circuit.
Abstract:
A tri-state read-only memory device and its fabrication method are disclosed herein. After a plurality of word lines are formed and spaced apart in parallel through patterning by a shielding layer, insulating blocks are formed to fill the trenches among the word lines. Then removing the shielding layer, sidewalls, of the insulating blocks are revealed, and spacers are formed on the sidewalls thereof. The spacers above the first state regions are removed to form the conductive width of the channel regions in three forms. By merely applying one code-implantation, the ROM device are coded into on of three states at the same time. In addition, the disposition of the insulating blocks by liquid-phase deposition prevents the misalignment that often occurs with the conventional method.
Abstract:
A tri-state read-only memory device and its fabrication method are disclosed herein. After a plurality of word lines are formed and spaced apart in parallel through patterning by a shielding layer, insulating blocks are formed to fill the trenches among the word lines. Then removing the shielding layer, sidewalls of the insulating blocks are revealed, and spacers are formed on the sidewalls thereof. The spacers above the first state regions are removed to form the conductive width of the channel regions in three forms. By merely applying one code-implantation, the ROM device are coded into on of three states at the same time. In addition, the disposition of the insulating blocks by liquid-phase deposition prevents the misalignment that often occurs with the conventional method.
Abstract:
A process for fabricating identification alphanumeric code markings on the substrate of mask ROM devices is disclosed. The fabrication process comprises first forming a deposited layer on the substrate of the mask ROM device. A photoresist layer is then formed on the deposited layer. A photomask layer by is then shaped by forming a pattern on the photoresist layer that reveals the channel regions of the memory cell transistors to be programmed into the blocking state, as well as reveals the graphical pattern of the alphanumeric code marking. An etching procedure then removes the portion of the deposited layer revealing the graphical pattern of the alphanumeric code markings. The photomask layer is then removed. A code implantation procedure may precede or follow the etching procedure to facilitate the programming of the memory cells of the mask ROM device.
Abstract:
A method for fabricating ROM devices with self-aligned code implants comprises the steps of: forming an oxide layer over a silicon substrate; forming a plurality of deposition selecting strips over the oxide layer; forming a dielectric between the plurality of deposition selecting strips to thereby produce a plurality of dielectric strips; removing the deposition selecting strips; forming a number of code diffusion regions in the silicon substrate; and forming a plurality of word lines between the plurality of dielectric strips. Since the code diffusion regions are formed by implanting ions through the dielectric strips, the shielding of the dielectric strips can prevent the outspreading of impurities due to code mask mis-alignment. Therefore, the positions of code diffusion regions can be well controlled beneath the word lines.
Abstract:
A ROM device with an array of cells has conductors formed in a substrate. Insulation is formed, and parallel conductors are formed orthogonally to the line regions, as thin as about 2000 .ANG.. Glass insulation having a thickness of about 3000 .ANG. or less, formed over the conductors is is reflowed. Contacts and a metal layer on the glass insulation are formed. Resist is patterned and used for etching the resist pattern in the metal. Removal of the second resist and device passivation with a layer having a thickness of about 1000 .ANG., precede activation of the impurity ions by annealing the device at less than or equal to about 520.degree. C. in a reducing gas atmosphere. After resist removal, a second resist is formed and exposed with a custom code pattern to form a mask. Ions are implanted into the substrate with a dosage of between about 1 E 14 and 3 E 14 atoms/cm.sup.2 with an energy of less than or equal to 200 keV adjacent to the conductors through the openings in the insulation.