Abstract:
A substrate support for a substrate processing chamber includes a baseplate, a ceramic layer bonded to the baseplate, and a seal provided in an outer perimeter of an interface between the ceramic layer and the baseplate. The seal is arranged to seal the interface from the substrate processing chamber and includes an adhesive comprising a first material arranged in the outer perimeter of the interface between the ceramic layer and the baseplate and a ring arranged in the outer perimeter of the interface between the ceramic layer and the baseplate. The ring is removable and comprises a second material having a greater resistance to plasma erosion than the first material.
Abstract:
A substrate support for a substrate processing system includes a plurality of heating zones, a baseplate, a heating layer arranged on the baseplate, a ceramic layer arranged on the heating layer, and wiring provided through the baseplate, the heating layer, and into the ceramic layer in a first zone of the plurality of heating zones. An electrical connection is routed from the wiring in the first zone, across the ceramic layer to a second zone of the plurality of heating zones, and to a heating element in the heating layer in the second zone.
Abstract:
Various embodiments include apparatuses to raise and lower substrates, as used in the semiconductor and allied industries, toward or away from a substrate-holding mechanism (e.g., such as an electrostatic chuck (ESC). In a specific embodiment, a substrate lift-mechanism includes a number of pins to position the substrate above a substrate-holding device. Mid-position sensors are respectively coupled to a corresponding pin. The mid-position sensors monitor an intermediate position of the corresponding pin between a maximum position and a minimum position. Other apparatuses and systems are disclosed.
Abstract:
A substrate support includes: a first plate configured to support a substrate; and a second plate that is connected to the first plate. The second plate includes at least one of: an internal coolant channel configured to receive coolant; and an internal gas channel configured to receive gas. The at least one of the internal coolant channel and the internal gas channel includes one of: chamfered internal corners; and staired internal corners.
Abstract:
A semiconductor substrate support for supporting a semiconductor substrate in a plasma processing chamber includes a heater array comprising thermal control elements operable to tune a spatial temperature profile on the semiconductor substrate, the thermal control elements defining heater zones each of which is powered by two or more power supply lines and two or more power return lines wherein each power supply line is connected to at least two of the heater zones and each power return line is connected to at least two of the heater zones. A power distribution circuit is mated to a baseplate of the substrate support, the power distribution circuit being connected to each power supply line and power return line of the heater array. A switching device is connected to the power distribution circuit to independently provide time-averaged power to each of the heater zones by time divisional multiplexing of a plurality of switches.
Abstract:
A temperature controller for a substrate processing system includes an interface configured to receive a processing temperature corresponding to a desired processing temperature of a substrate. The temperature controller includes a thermal control element controller configured to selectively control a thermal control element to adjust a temperature of a substrate support. The thermal control element controller is further configured to, prior to the substrate being loaded onto the substrate support, determine at least one of a temperature of the substrate support and a temperature of the substrate and, based on the processing temperature and the at least one of the temperature of the substrate support and the temperature of the substrate, control the thermal control element to adjust the temperature of the substrate support to a setpoint temperature that is different than the processing temperature.
Abstract:
A temperature controller is provided and includes interfaces, a compensation controller, summers, and a second controller. An interface receives a bias power signal and a plasma signal. The bias power signal indicates a bias RF power level of a RF generator. The plasma signal indicates a plasma RF power level of another RF generator. Another interface receives a temperature signal indicating a temperature of a substrate support. The compensation controller generates a compensation value based on a bias feed-forward transfer function and the bias RF power level and another compensation value based on a plasma feed-forward transfer function and the plasma RF power level. A summer generates an error signal based on a set point and the temperature. The second controller generates a control signal based on the error signal. Another summer controls an actuator to adjust the temperature based on the compensation values and the control signal.
Abstract:
A system for controlling a substrate temperature in a substrate processing system includes a substrate support device, a controller, a temperature sensor, and a thermal control element (TCE). The controller is configured to, during a first period, control the TCE to adjust the temperature of the substrate support device to a temperature value based on a temperature difference between the substrate temperature before the substrate is loaded onto the substrate support device and a desired temperature for the substrate support device. The temperature value is not equal to the desired temperature. The substrate is loaded onto the substrate support device after the first period begins and before the temperature of the substrate support device returns to the desired temperature. The controller is further configured to, during a second period following the first period, control the temperature of the substrate support device to the desired temperature for the substrate support device.
Abstract:
A system for controlling a temperature of a wafer processing substrate includes memory that stores first data indicative of first temperature responses of at least one first thermal control element. The first data corresponds to the first temperature responses as observed when a first control parameter of the at least one first thermal control element is maintained at a first predetermined first value. A first controller receives a setpoint temperature for the wafer processing substrate and maintains the first control parameter of the at least one first thermal control element at a second value based on the received setpoint temperature. A second controller retrieves the first data from the memory, calculates second data indicative of temperature non-uniformities associated with the wafer processing substrate based on the first data and the second value, and controls a plurality of second thermal control elements based on the calculated second data.
Abstract:
A method for auto-correction of at least one malfunctioning thermal control element among an array of thermal control elements that are independently controllable and located in a temperature control plate of a substrate support assembly which supports a semiconductor substrate during processing thereof, the method including: detecting, by a control unit including a processor, that at least one thermal control element of the array of thermal control elements is malfunctioning; deactivating, by the control unit, the at least one malfunctioning thermal control element; and modifying, by the control unit, a power level of at least one functioning thermal control element in the temperature control plate to minimize impact of the malfunctioning thermal control element on the desired temperature output at the location of the at least one malfunctioning thermal control element.