Abstract:
The organic light emitting display device includes a flexible substrate, a thin-film transistor on the flexible substrate, a first anode on the thin-film transistor, a second anode on the same plane with the first anode and spaced apart from the first anode so as to surround the first anode, an organic light emitting layer on the first anode and the second anode, and a cathode on the organic light emitting layer. The second anode includes an opening where the first anode is encompassed therein. The shape of the first anode and the second anode and arrangement thereof reduces a segment length of an anode in a bending direction of the organic light emitting display device, and, thus, occurrence of cracks in the anode can be minimized.
Abstract:
There is provided a flexible display having a new wire structure and a new insulating layer structure. A flexible display includes a flexible substrate having a first area and a second area. The second area is curved in a non-zero angle relative to the plane of the first area. The flexible display further includes a plurality of wires that extend over from the first area to the second area of the flexible substrate. Each of the wires is covered by an upper insulating pattern, which is separated from other upper insulating pattern. Each upper insulating pattern covering the wire has substantially the same trace pattern shape of the corresponding wire thereunder. Accordingly, by adopting the above-described wire structure and upper insulating layer structure, crack generation and propagation in the wires and the insulating layers from bending of the flexible display can be minimized.
Abstract:
A flexible display substrate, a flexible organic light emitting display device, and a method of manufacturing the same are provided. The flexible display substrate comprises a flexible substrate including a display area and a non-display area extending from the display area, a first wire formed on the display area of the flexible substrate, and a second wire formed on the non-display area of the flexible substrate, wherein at least a part of the non-display area of the flexible substrate is curved in a bending direction, and the second wire formed on at least a part of the non-display area of the flexible substrate includes a first portion formed to extend in a first direction and a second portion formed to extend in a second direction.
Abstract:
There is provided a flexible display having a plurality of innovations configured to allow bending of a portion or portions to reduce apparent border size and/or utilize the side surface of an assembled flexible display.
Abstract:
Embodiments of the present disclosure can significantly reduce the non-display area of a flexible OLED display, which would otherwise be covered by a cosmetic trim such as a bezel or an opaque. As such, an electronic device with a display having minimized border area can be provided. This makes it possible to reduce the overall size of the electronic device without sacrificing the size of the display therein. Such a reduction in size of the bezel was achieved by bending the flexible substrate near its edge using an insert member.
Abstract:
Provided are a flexible thin film transistor substrate and a flexible organic light emitting display device. The flexible thin film transistor substrate includes: a flexible substrate including at least one thin film transistor (TFT) area and having flexibility, an active layer disposed in the TFT area on the flexible substrate, a gate insulation layer disposed on the active layer, a gate electrode overlapping with the active layer on the gate insulation layer, an insulating interlayer disposed on the gate electrode, and a source electrode and a drain electrode disposed on the insulating interlayer and connected with the active layer, respectively. The gate insulation layer or the insulating interlayer includes at least one hole pattern configured to reduce bending stress.
Abstract:
There is provided a flexible display having a plurality of innovations configured to allow bending of a portion or portions to reduce apparent border size and/or utilize the side surface of an assembled flexible display.
Abstract:
There is provided a flexible display having a plurality of innovations configured to allow bending of a portion or portions to reduce apparent border size and/or utilize the side surface of an assembled flexible display.
Abstract:
A flexible display device and a method of manufacturing the same are provided. The flexible display device comprises a first flexible substrate including a display area including an organic light emitting layer, and a peripheral circuit area, and a second flexible substrate coming in contact with the first flexible substrate and including a pattern for facilitating bending thereof, wherein the second flexible substrate has a certain shape according to the pattern, and the first flexible substrate has a shape corresponding to the certain shape. Various embodiments of the present invention provide a flexible display device capable of realizing a narrow bezel-type or bezel-free display device and simultaneously realizing improved types of design, facilitating bending of a bezel area so as to realize a narrow bezel-type or bezel-free display device, and minimizing damage to an area to be bent.
Abstract:
A flexible display device and a method of manufacturing the same are provided. The flexible display device comprises a first flexible substrate including a display area including an organic light emitting layer, and a peripheral circuit area, and a second flexible substrate coming in contact with the first flexible substrate and including a pattern for facilitating bending thereof, wherein the second flexible substrate has a certain shape according to the pattern, and the first flexible substrate has a shape corresponding to the certain shape. Various embodiments of the present invention provide a flexible display device capable of realizing a narrow bezel-type or bezel-free display device and simultaneously realizing improved types of design, facilitating bending of a bezel area so as to realize a narrow bezel-type or bezel-free display device, and minimizing damage to an area to be bent.