Abstract:
A digital television (DTV) receiver for processing a DTV signal, a receiver to receive a digital television signal including a plurality of extended text table (ETT) instances that appear in transport stream packets with common PID values, the ETT instances having common table ID values, each ETT instance comprising a section header and a message body, the section header containing a table identification (ID) extension field that serves to establish uniqueness of each ETT instance, the message body containing an extended text message (ETM) which provides detailed descriptions of a virtual channel or an event associated with each ETT instance, wherein the section header further contains a protocol version field indicating a protocol version and a current next indicator field; a demodulator to demodulate the digital television signal; and an identifier to identify at least one pertinent ETT instance from the plurality of ETT instances.
Abstract:
A method of processing a digital television (DTV) signal in a DTV receiver, receiving a digital television signal including a plurality of extended text table (ETT) instances that appear in transport stream packets with common PID values, the ETT instances having common table ID values, each ETT instance comprising a section header and a message body, the section header containing a table identification (ID) extension field that serves to establish uniqueness of each ETT instance, the message body containing an extended text message (ETM) which provides detailed descriptions of a virtual channel or an event associated with each ETT instance, wherein the section header further contains a section number field indicating a section number and a section syntax indicator field; demodulating the digital television signal; and identifying at least one pertinent ETT instance from the plurality of ETT instances.
Abstract:
A method of processing a non-real time service of a broadcast receiver, which receives and processes a service being transmitted in non-real time, and a broadcast receiver are disclosed. Herein, the method of processing a non-real time service of a broadcast receiver includes receiving a signaling information table including additional information on contents configuring a non-real time service and a content identifier for each content, acquiring the additional information on contents and the content identifier for each content from the signaling information table, storing contents being downloaded through a FLUTE or an internet in a storage medium, based upon the additional information on contents and the content identifier for each content, and displaying a list of recordings including the contents stored in the storage medium, wherein a list of recordings screen displaying the list of recordings includes at least one of a content name, a channel name, a date of recording, and a content size.
Abstract:
A digital broadcasting system and a method of processing data are disclosed, which are robust to error when mobile service data are transmitted. To this end, additional encoding is performed for the mobile service data, whereby it is possible to strongly cope with fast channel change while giving robustness to the mobile service data.
Abstract:
A digital broadcasting system and a data processing method are disclosed. A receiver receives a broadcast signal including mobile service data and main service data. A known data detector detects known data from the broadcast signal. An equalizer performs channel equalization on the mobile service data received by means of the detected known data. An RS frame decoder acquires an RS frame from the channel-equalized mobile service data. A management processor extracts a Generic Stream Encapsulation (GSE) packet from a GSE Base Band (BB) constructing one row of the RS frame, and calculates an IP datagram from the extracted GSE packet. A presentation processor displays broadcast data using data contained in the calculated IP datagram.
Abstract:
A method of receiving a broadcast signal including a Non-Real-Time (NRT) service and a broadcast receiver are disclosed herein. A method of receiving a broadcast signal including an NRT service, method comprises receiving a broadcast signal including first signaling information and second signaling information, identifying the NRT service based on the first signaling information, identifying an Internet Protocol (IP) address of an NRT service signaling data based on the first signaling information and the second signaling information, receiving the NRT service signaling data by accessing the IP address, and downloading a desired NRT service based on the NRT service signaling data.
Abstract:
According to one embodiment, a digital broadcasting system includes an RS (Reed-Solomon) encoder configured to encode mobile service data for FEC (Forward Error Correction) to build RS frames including the mobile service data and a signaling information table, a signaling encoder configured to encode signaling information including fast information channel (FIC) data, and transmission parameter channel (TPC) data, a group formatter configured to form data groups, wherein at least one of the data groups includes encoded mobile service data, known data sequences, the FIC data and the TPC data, and a transmission unit configured to transmit the broadcast signal including a parade of the data groups.
Abstract:
A method of providing a Non-Real-Time (NRT) service includes receiving a file configuring the NRT service, first signaling information, and second signaling information in a state of being IP-packetized and contained in a single ensemble, configuring and displaying a service guide using the first signaling information acquired from the ensemble, acquiring a first content identifier of content selected from the displayed service guide, accessing a FLUTE session using the second signaling information acquired from the ensemble and acquiring a second content identifier matched with the first content identifier from the accessed FLUTE session, and receiving and storing at least one file configuring the content based on the acquired second content identifier.
Abstract:
A digital television (DTV) signal for use in a DTV receiver includes an extended text table (ETT) which includes a header and a message body. The header includes a table identification extension field which serves to establish uniqueness of the ETT, and the message includes an extended text message (ETM). If the ETT is an event ETT, the table ID extension field includes an event identification which specifies an identification number of an event associated with the ETT. On the other hand, if the ETT is a channel ETT, the table identification extension field includes a source identification which specifies a programming source of a virtual channel associated with the ETT. A section-filtering unit included in the DTV receiver is able to use table identification extension fields of a plurality of ETTs for section-filtering a pertinent event or channel ETT from the ETTs.
Abstract:
A digital television (DTV) signal for use in a DTV receiver includes an extended text table (ETT) which includes a header and a message body. The header includes a table identification extension field which serves to establish uniqueness of the ETT, and the message includes an extended text message (ETM). If the ETT is an event ETT, the table ID extension field includes an event identification which specifies an identification number of an event associated with the ETT. On the other hand, if the ETT is a channel ETT, the table identification extension field includes a source identification which specifies a programming source of a virtual channel associated with the ETT. A section-filtering unit included in the DTV receiver is able to use table identification extension fields of a plurality of ETTs for section-filtering a pertinent event or channel ETT from the ETTs.