Abstract:
An embodiment of the present specification provides a method and device for processing video data. A method for processing a video signal according to an embodiment of the present specification may comprise the steps of: acquiring a transform index related to one of a plurality of transform combinations including combinations of one or more transform kernels for transforming of a current block of the video signal; deriving a transform combination including a vertical transform and a horizontal transform related to the transform index; and applying each of the vertical transform and horizontal transform of the transform combination to the current block, wherein the transform kernels include DST-7 or DST-8, the DST-7 or DST-8 is designed on the basis of a discrete Fourier transform (DFT) to which a scale value in the form of a power of 2 related to a bit length of a transform coefficient has been applied, and the transform kernels are designed using the DFT to which the scale value has been applied, so as to enable reduction of a calculation complexity for transform.
Abstract:
An image decoding method according to the present document comprises the steps of: receiving a quantized transform coefficient for a target block and a transform index for non-separable quadratic transform; deriving transform coefficients by inversely quantizing the quantized transform coefficient; deriving corrected transform coefficients on the basis of a transform kernel matrix in a predetermined transform set indicated by the transform index; and deriving residual samples for the target block on the basis of inverse linear transform for the corrected transform coefficients, wherein when the target block is divided into a predetermined number of sub-blocks and is coded by intra prediction, the corrected transform coefficients are derived in units of the sub-blocks, and the transform index is received for the target block.
Abstract:
The present invention relates to a video signal decoding method based on a Multiple Transform Selection (MTS). The method may comprise the steps of: parsing a first syntax element representing whether MTS applies to the inverse transformation of a current block, wherein the MTS represents a transform mode which uses a transform type other than a default transform type predefined for the current block; by performing inverse quantization on the current block, deriving an inverse-quantized transform coefficient array having the width and the height of the current block; determining, on the basis of the first syntax element, a vertical transform type applying to the vertical direction of the current block, and a horizontal transform type applying to the horizontal direction of the current block; and, by performing inverse transformation on the inverse-quantized transform coefficient array by using the vertical transform type and the horizontal transform type, deriving a residual sample array having the width and the height of the current block.
Abstract:
A video decoding method performed by a decoding apparatus includes the steps of: deriving control points (CP) for a current block; acquiring movement vectors for the CPs; deriving a sample unit movement vector in the current block on the basis of the acquired movement vectors; and deriving a prediction sample for the current block on the basis of the sample unit movement vector. According to the present invention, it is possible to effectively perform, through sample unit motion vectors, inter-prediction not only in a case where an image in the current block is plane-shifted but also in a case where there are various image distortions.
Abstract:
The present disclosure relates to a method for decoding a video signal based on adaptive multiple transforms (AMT). The method includes: obtaining an AMT index from the video signal, where the AMT index indicates any one of a plurality of transform combinations in a transform configuration group, and the transform configuration group includes discrete sine transform type 7 (DST7) and discrete cosine transform type 8 (DCT8): deriving a transform combination corresponding to the AMT index, where the transform combination includes a horizontal transform and a vertical transform, and at least one of the DST-7 or the DCT-8: performing an inverse transform on a current block on the basis of the transform combination; and restoring the video signal by using the inversely transformed current block. The AMT represents a transform scheme that is performed based on a transform combination adaptively selected from a plurality of transform combinations.
Abstract:
The present invention provides a method for decoding a video signal by using a graph-based transform, comprising the steps of: parsing a transform index from the video signal; generating a line graph on the basis of edge information on a target unit; aligning transform vectors for each of segments of the line graph on the basis of a transform type corresponding to the transform index; acquiring a transform kernel by realigning the transform vectors for each of segments of the line graph according to a predetermined condition; and performing an inverse transform for the target unit on the basis of the transform kernel.
Abstract:
The present invention provides a method for decoding a video signal using a graph-based transform including receiving, from the video signal, a transform index for a target block; deriving a graph-based transform kernel corresponding to the transform index, and the graph-based transform kernel is determined based on boundary information, which represents a property of a signal for a block boundary; and decoding the target block based on the graph-based transform kernel.
Abstract:
The present invention relates to a method and a device for decoding a bitstream for a video signal, the method comprising the steps of: acquiring, from the bitstream, type number information and type information for a plurality of CTBs; acquiring, from the bitstream, type indication information for a current CTB among the plurality of CTBs; determining the size of the current CTB on the basis of a CTB type indicated by the type indication information; determining one or more coding blocks within the current CTB on the basis of the determined size of the current CTB and the determined minimum size of the coding block; acquiring, from the bitstream, prediction mode information with respect to each of the one or more coding blocks; and reconstructing a current coding block among the one or more coding blocks on the basis of prediction mode information related to the current coding block.
Abstract:
According to the present invention, a method for processing video signals can determine an interview motion vector of a current block using an interview motion vector of a temporal neighboring block in consideration of a global motion vector. The present invention can obtain an accurate interview motion vector according to obtaining the temporal neighboring block of the current block in consideration of a motion change according to output sequence information and accordingly, can increase the accuracy of inter-prediction.
Abstract:
A holographic display device and method of generating a hologram using redundancy of 3D video are disclosed. A storage unit stores the hologram of a previous 3D image frame. A control unit generates an update map indicating an update required 3D point among 3D points included in a current 3D image frame based on the current 3D image frame and the previous 3D image frame and modifies the update map to further include information indicating the update of a 3D point related to the update required.