Abstract:
A computer-aided communication and assistance system that uses a signal processing and other algorithms in a processor in wireless communication with a microphone system to aid a deaf person. An instrumented communication module receives information from one or more microphones and provides textual and, optionally, stimulatory information to the deaf person. In one embodiment, a microphone is provided in a piece of jewelry or clothing. In one embodiment, a wireless (or wired) earpiece is provided to provide microphones and vibration stimulators.
Abstract:
A computer-aided training and management system that uses a computer or other processor in wireless communication with an instrumented dog collar and/or optionally, one or more dog interaction devices, such as, for example, video monitors, loudspeakers, video cameras, training toys (e.g., ball, bone, moving toy, etc.), an animatronics “trainer,” a treat dispenser, a food dispensing and monitoring device, a water dispensing and monitoring device, tracking devices, a dog door, dog-monitoring doghouse, a dog-monitoring dog toilet, is described. In one embodiment, the instrumented dog collar is in two-way communication with a central computer system.
Abstract:
A system for conditions favorable for the growth of fungus in a building or vehicle is described. One or more humidity sensors are places in areas, such as under sinks, in an attic spaces, etc. to detect excess humidity (due to leaks, condensation, etc.). In one embodiment, a monitoring computer compares humidity measurements taken from different sensor units in order to detect areas that have excess humidity. Thus for example, the monitoring computer can compare the humidity readings from a first sensor unit in a first attic area, to a humidity reading from a second sensor unit in a second area. For example, the monitoring computer can take humidity readings from a number of attic areas to establish a baseline humidity reading and then compare the specific humidity readings from various sensor units to determine if one or more of the units are measuring excess humidity. The monitoring computer flags areas of excess humidity for further investigation by maintenance personnel. In one embodiment, the monitoring computer maintains a history of humidity readings for various sensor units and flags areas that show an unexpected increase in humidity for investigation by maintenance personnel.
Abstract:
An apparatus is disclosed for practicing a method of treating viruses in the nasal mucosa. Vapor is generated, heated and delivered to the nasal mucosa in intermittent bursts, timed to coincide with inhalation. Control circuits are provided to maintain the temperature of the vapor at the point of delivery at a level greater than that necessary to kill viruses in the nasal mucosa. Timing circuits can synchronize the vapor delivery with a breathing cycle with heated vapor being supplied during inhalation and blocked during exhalation. Other circuits terminate operation when liquid is insufficient or after a predetermined timed interval.
Abstract:
A sensor unit includes at least one sensor configured to measure an ambient condition. The controller can be configured to receive instructions, to report a notice level when the controller determines that data measured by the at least one sensor fails a report threshold test corresponding to a report threshold value. The controller can also be configured to obtain a plurality of calibration measurements from the at least one sensor during a calibration period and to adjust the threshold based on the calibration measurements. The controller can be configured to compute a first threshold level corresponding to background noise and a second threshold level corresponding to sensor noise, and to compute the report threshold value from the second threshold. In one embodiment, the sensor unit adjusts one or more of the thresholds based on ambient temperature.
Abstract:
A low cost, robust, wireless sensor system that provides an extended period of operability without maintenance is described. The system includes one or more intelligent sensor units and a base unit that can communicate with a large number of sensors. When one or more of the sensors detects an anomalous condition (e.g., smoke, fire, water, etc.) the sensor communicates with the base unit and provides data regarding the anomalous condition. The base unit can contact a supervisor or other responsible person by a plurality of techniques, such as, telephone, pager, cellular telephone, Internet, etc. In one embodiment, one or more wireless repeaters are used between the sensors and the base unit to extend the range of the system and to allow the base unit to communicate with a larger number of sensors.
Abstract:
A multimedia control system presents program schedule information to a user in a visually and intellectually-intuitive manner. The multimedia control system can be used to display programming information, control multimedia devices, control home automation devices, etc. In one embodiment, a control screen used to display programming information is configured as a touch screen to allow the user to select programming, control multimedia devices, or perform other functions by touching the screen. In one embodiment, the system uses a consistent, user-selectable, intuitive user interface. In one embodiment, programming information is dynamically updated to provide the user with current programming information, such as, for example, sports scores, commercial breaks, news stories, documentary contents, etc.
Abstract:
An apparatus is disclosed for practicing a method of treating viruses in the nasal mucosa. Vapor is generated, heated and delivered to the nasal mucosa in intermittent bursts, timed to coincide with inhalation. Control circuits are provided to maintain the temperature of the vapor at the point of delivery at a level greater than that necessary to kill viruses in the nasal mucosa. Timing circuits can synchronize the vapor delivery with a breathing cycle with heated vapor being supplied during inhalation and blocked during exhalation. Other circuits terminate operation when liquid is insufficient or after a predetermined timed interval.
Abstract:
A system for load control in an electrical power system is described, wherein one or more temperature-monitoring devices are provided to control power service to relatively high-load devices such as, for example, pool pumps, electric water heaters, electrics ovens etc. When ambient temperatures are relatively high, and thus, electrical power demands from air conditioning systems are relatively high, the temperature-monitoring devices can remove power from the controlled device during the hottest portions of the day. The temperature-monitoring devices can provide power to the controlled devices during the cooler portions of the day. During heat waves or other periods of relatively continuous high heat, the temperature-monitoring devices can schedule power to the controlled devices to reduce overall power demands and to run the controlled devices during the cooler portions of the day when air conditioning electrical loads are reduced.
Abstract:
An Electronically-Controlled Register Vent (ECRV) that can be easily installed by a homeowner or general handyman is disclosed. The ECRV can be used to convert a non-zoned HVAC system into a zoned system. The ECRV can also be used in connection with a conventional zoned HVAC system to provide additional control and additional zones not provided by the conventional zoned HVAC system. In one embodiment, the ECRV is configured have a size and form-factor that conforms to a standard manually-controlled register vent. In one embodiment, a zone thermostat is configured to provide thermostat information to the ECRV. In one embodiment, the zone thermostat communicates with a central monitoring system that coordinates operation of the heating and cooling zones and the opening of an ECRV provided to a supply vent and the opening of an ECRV provided to a return vent.