Abstract:
An interior rearview mirror assembly for a vehicle includes a mirror casing and a prismatic interior reflective element. The reflective element comprises a wedge-shaped glass substrate having a perimeter edge about a periphery of the glass substrate and extending between first and second surfaces thereof. The glass substrate has a mirror reflector established at the second surface. A front surface of the perimeter edge provides a smooth curved transition at the perimeter edge between a perimeter region of the first surface and the mirror casing. The front surface of the perimeter edge is rounded with a radius of curvature of at least about 2.5 mm. No portion of the mirror casing encompasses the first surface of the glass substrate.
Abstract:
An interior rearview mirror assembly for a vehicle includes a mirror head having a mirror reflective element, and a video display device behind the mirror reflective element and viewable through the mirror reflective element when activated. The video display device includes a display screen that occupies at least 75 percent of a reflective region of the mirror reflective element. The video display device includes a backlighting array of light emitting diodes for backlighting the display screen, and the backlighting array of light emitting diodes includes a plurality of zones of light emitting diodes, with each zone having at least two light emitting diodes. The zones of light emitting diodes are independently controlled based on the video images being displayed by the video display device.
Abstract:
An exterior rearview mirror assembly for a vehicle includes a mirror head and an exterior mirror reflective element fixedly attached at the mirror head. An attachment portion is configured for attachment at an exterior portion of the vehicle. The mirror assembly includes a multi-axis adjustment mechanism having at least one electrically-operable actuator. The multi-axis adjustment mechanism is operable to move the mirror head, with the exterior mirror reflective element fixedly attached thereto, about multiple axes relative to the attachment portion. The exterior mirror reflective element moves in tandem with movement of the mirror head relative to the exterior portion of the body of the vehicle to adjust the rearward field of view of a driver of the vehicle who views the exterior mirror reflective element when operating the vehicle.
Abstract:
A vehicle mirror and camera mounting system includes a windshield attachment member configured to adhesively attach at a vehicle windshield and a camera mounting bracket configured to attach at the windshield attachment member. The camera mounting bracket is an injection molded bracket that is formed by injection molding a thermoplastic reinforced polyamide polymeric molding resin. With the windshield attachment member adhesively attached at the in-cabin surface of the windshield, the camera mounting bracket, with a camera module attached thereat, is attached at the windshield attachment member. The camera mounting bracket includes a mirror attachment portion for attaching an interior rearview mirror assembly. The mirror mount includes an attaching portion that is configured to insert at least partially into a socket of the mirror attachment portion of the camera mounting bracket to attach the interior rearview mirror assembly at the camera mounting bracket.
Abstract:
A rearview mirror assembly for a vehicle includes a mirror casing and a mirror reflective element disposed at the mirror casing. The mirror reflective element includes at least a first glass substrate having a front surface and a rear surface. When the rearview mirror assembly is normally mounted in a vehicle, the front surface is closer than the rear surface to a driver that is normally operating the vehicle. The first glass substrate has a flat central region and a rounded perimeter edge, and the rounded perimeter is exposed to and is viewable by the driver of the vehicle. With the mirror reflective element disposed at the mirror casing, no portion of the mirror casing encompasses the rounded perimeter edge. The rounded perimeter edge has a glare-reducing surface finish.
Abstract:
An interior rearview mirror assembly for a vehicle includes a mirror casing and a prismatic interior reflective element. The reflective element comprises a wedge-shaped glass substrate having a perimeter edge about a periphery of the glass substrate and extending between first and second surfaces thereof. The glass substrate has a mirror reflector established at the second surface. A front surface of the perimeter edge provides a smooth curved transition at the perimeter edge between a perimeter region of the first surface and the mirror casing. The front surface of the perimeter edge is rounded by at least one of grinding and polishing to provide a generally rounded curved surface between the first surface of the glass substrate and the mirror casing. The radius of curvature of the front surface is at least about 2.5 mm. No portion of the mirror casing encompasses the first surface of the glass substrate.
Abstract:
A reflective element assembly for a vehicular rearview mirror assembly includes front and rear substrates with an electro-optic medium disposed therebetween. An electrical connector has an attachment portion and a wire receiving portion for receiving an electrical wire therein. A flange of the attachment portion is configured to be disposed at a fourth surface of the rear substrate and a tab is configured to extend at least partially across a perimeter edge of the rear substrate. An electrically conductive material is disposed in an uncured state and uncured electrically conductive material flows at least partially through the aperture and is cured to secure the electrical connector at the rear substrate. The wire receiving portion of the electrical connector is configured to receive the electrical wire therein and includes at least one tang that engages the electrical wire when the electrical wire is inserted into the wire receiving portion.
Abstract:
A method of coating a rear glass substrate for an electrochromic reflective element includes providing a fixture having a recess and a masking element extending from a perimeter region of the recess over a portion of the recess. The masking element includes a disc portion and an arm portion extending between the disc portion and the perimeter region of the recess of the fixture. A rear glass substrate is positioned in the recess and the masking element extends over and is spaced from the surface of the glass substrate. The glass substrate surface is coated with a mirror reflector coating. The masking element is shaped such that the mirror reflector coating is deposited at the surface behind the arm portion but is substantially not deposited behind the disc portion so as to establish a window region through the mirror reflector coating at the glass substrate surface.
Abstract:
An interior rearview mirror assembly for a vehicle includes a mirror casing and an electro-optic reflective element. The reflective element has an electro-optic active region where an electro-optic medium is disposed and bounded by a perimeter seal. A transparent electrically conductive coating is established at the rear surface of the front substrate at the electro-optic active region. A perimeter portion of the front substrate extends beyond a corresponding perimeter portion of the rear substrate to establish a user input region that is outboard of the electro-optic active region. A user input, such as a touch sensor, is disposed at the user input region, and the user input is not in electrical contact with the transparent electrically conductive coating at the rear surface of the front substrate. The user input is operable to detect the presence or touch of a person's finger at the user input region.
Abstract:
An interior rearview mirror assembly for a vehicle includes a mirror casing and an electro-optic reflective element. The reflective element has an electro-optic active region where an electro-optic medium is disposed and bounded by a perimeter seal. A transparent electrically conductive coating is established at the rear surface of the front substrate at the electro-optic active region. A perimeter portion of the front substrate extends beyond a corresponding perimeter portion of the rear substrate to establish a user input region that is outboard of the electro-optic active region. A user input, such as a touch sensor, is disposed at the user input region, and the user input is not in electrical contact with the transparent electrically conductive coating at the rear surface of the front substrate. The user input is operable to detect the presence or touch of a person's finger at the user input region.