摘要:
Aspects of a method and system for link adaptive Ethernet communications are provided. In this regard, characteristics of a cable attached to a network device may be determined, and the network device may be configured based on the determined characteristics. One or more of a plurality of Ethernet PHYs within the network device may be selected to be utilized for communicating over the cable based on the determined characteristics of the cable. The selected Ethernet PHYs may be configured based on the determined characteristics. A modulation scheme utilized by the selected Ethernet PHYs may be configured based on the determined characteristics. A modulation scheme utilized by each of the selected Ethernet PHYs may be configured independently from a modulation scheme utilized by other ones of the selected Ethernet PHYs.
摘要:
In a network deploying a plurality of network devices with PSE capabilities, a UPS resource may be effectively shared among those network devices by selecting at least one network device to be “master” and transmitting information reflecting worst case power commitments from “slave” network devices to the at least one master network device so that the master network device may keep track of the worst case power commitments of the plural network devices as a group. This information is compared to the known capabilities of the UPS resource and, where a deficiency or near-deficiency exists, the situation is communicated to network management for responsive action.
摘要:
Communications over a wired data telecommunications network between and among power sourcing equipment (PSE), powered devices (PDs), and the like, take place over the wired medium by modulating an inline power signal. Any suitable communications protocol may be used and any suitable modulation scheme can be used. Examples of information to be communicated include: changing power requirements or capabilities (higher or lower) and acknowledgements thereof (permitting finer power class gradation than available under existing standards); sensor data; wireless data converted to wired data; status signaling, and the like. Such communications may be used for a number of purposes including supporting redundant provision of services over a network.
摘要:
In a Power over Ethernet (POE) system, a power source equipment (PSE) device configured to deliver power to one or more powered devices (PDs) over a plurality of Ethernet transmission lines. The PSE interface includes a multi-port transmission line connector capable connecting to multiple Ethernet transmission lines, and a power source equipment (PSE) controller module integrated with the multi-port transmission line connector. The PSE controller module is capable of semi-automatic mode and legacy detection of one or more of the PDs that are coupled to the Ethernet transmission lines. The PSE controller module includes a plurality of PSE controllers corresponding to the Ethernet transmission lines, including a master PSE controller and plurality of slave PSE controllers coupled to the master PSE controller. The master PSE controller controls the slave PSE controllers, so as to provide power management to said corresponding PD devices, without an external microcontroller. In another embodiment, the PSE controller(s) inside the connector are configured for fully automatic mode, and include the feature of independent power management.
摘要:
A technique verifies a that a module is from an approved vendor. The technique involves obtaining vendor data and a first magic code from a module (e.g., a small form factor pluggable component), and generating a second magic code based on the vendor data. The technique further involves outputting (i) a magic code valid signal when the second magic code matches the first magic code, and (ii) a magic code invalid signal when the second magic code does not match the first magic code. Operation of a computerized device having the module can be based on the valid and invalid signals (e.g., a voltage level, a bit that is set or cleared, a value in a register, etc.). For example, a supplier of the electronic device can configure software running on the computerized device to disable the module if the first and second magic codes do not match.
摘要:
A controller in PSE (Power Sourcing Equipment) controls how to provision uninterruptible power through corresponding data ports (and cables) of the PSE to network devices. For example, the controller receives power profile information associated with the network devices indicating how to provision power to the network devices during a power failure such as when an uninterruptible power supply providing power to the power sourcing equipment runs on a battery rather than failed primary wall power. In response to detecting a power failure condition, the power sourcing equipment provisions power to the network devices based on the power profile information associated with the network devices. Consequently, the PSE can smartly provision power to more critical network devices while in a power failure mode rather than provision power to the network devices in the same way before and after occurrence of the power failure mode.
摘要:
Techniques test a clock signal by comparing different portions of that clock signal to each other. Such techniques enable the detection of a clock signal having anomalies such as missing pulses or occasional delayed pulses. In one arrangement, a data communications device has a clock signal generator, processing circuitry and a test circuit, both of which are coupled to the clock signal generator. The clock signal generator provides a clock signal. The processing circuitry uses the clock signal to receive data elements on a set of input ports, and to transmit the data elements on a set of output ports. The test circuit includes a node that receives the clock signal, a comparison circuit that provides a comparison signal based on a comparison between the clock signal and a delayed copy of the clock signal, and an output circuit that provides a result signal based on the comparison signal.
摘要:
Embodiments are directed to saving power consumption in packet processing devices. A method for controlling power consumption of a packet processing device includes determining a power-save link utilization based upon one or more power-save enabled links of the packet processing device, determining an aggregate minimum processing bandwidth for the packet processing device based at least upon the determined power-save link utilization, and adjusting a processing capacity of the packet processing device based upon the determined aggregate minimum processing bandwidth, wherein the power consumption is changed by the adjusting. System and computer program product embodiments are also disclosed.
摘要:
Various embodiments are provided for control of energy efficient operation of a networked device. In one embodiment, among others, a method includes determining that transmissions to a network device will be reduced for a period of time and transmitting a code or signaling to the network device that indicates a low power state for a subsystem above a physical layer of the network device without a reduction in physical layer activity. In another embodiment, a method includes obtaining a code or signaling defining a low power state and initiating the low power state in response to the transmitted code or signaling. In another embodiment, a method includes obtaining a code or signaling defining a wakeup state allowing a subsystem above a physical layer to enter a low power state without idling the entire physical layer and initiating the wakeup state for the physical layer in response to the transmitted code.
摘要:
Signals may be communicated between a video source and a video rendering device via and asymmetrical multi-rate Ethernet physical layer (PHY). The asymmetric multi-rate PHY may support multiple rates. The asymmetrical multi-rate Ethernet PHY may handle compressed and/or uncompressed, encrypted and/or unencrypted video signals and may handle audio/video bridging. One or more of the communicated signals may be modified by an echo cancellation operation, a near end cross talk (NEXT) cancellation operation, equalization, a far end cross talk (FEXT) cancellation operation and/or a forward error correction (FEC) operation. An aggregate communication rate may be evenly or unevenly distributed among one or more links coupling the video signal source to the video rendering device. A plurality of links coupling the video signal source to said video rendering device may also be aggregrated.