Abstract:
A computer-implemented method for displaying at least a portion of content being displayed on a first device to also be displayed on a second device. The method includes causing content to be displayed on a first device. The method then includes detecting a second device to concurrently display at least a portion of the content being displayed on the first device. A capability of the first device is compared with a capability of the second device. Based on the comparing, the at least the portion of the content is automatically provided to be displayed on the second device.
Abstract:
Several improvements for use with Bidirectionally Predictive (B) pictures within a video sequence are provided. In certain improvements Direct Mode encoding and/or Motion Vector Prediction are enhanced using spatial prediction techniques. In other improvements Motion Vector prediction includes temporal distance and subblock information, for example, for more accurate prediction. Such improvements and other presented herein significantly improve the performance of any applicable video coding system/logic.
Abstract:
Several improvements for use with Bidirectionally Predictive (B) pictures within a video sequence are provided. In certain improvements Direct Mode encoding and/or Motion Vector Prediction are enhanced using spatial prediction techniques. In other improvements Motion Vector prediction includes temporal distance and subblock information, for example, for more accurate prediction. Such improvements and other presented herein significantly improve the performance of any applicable video coding system/logic.
Abstract:
A proxy-based thin-client web browsing framework enables cooperative web browsing of multiple devices. The multiple devices may include devices that are not intended for web browsing and have limited or no web browsers and/or user input capabilities. The proxy-based thin client web browsing framework employs a virtual browser at a proxy server to perform all browser-engine logics, and retrieve, render and encode web pages on behalf of the multiple devices. The multiple devices therefore only need to have limited decoding and display capabilities to perform web browsing. The proxy-based thin client web browsing framework further includes a touch controller as a remote controller for a device that has no or limited user texting or manipulating capabilities.
Abstract:
Improved video coding is described to encode video data within a sequence of video frames. To this end, at least a portion of a reference frame is encoded to include motion information associated with the portion of the reference frame. At least a portion of a predictable frame that includes video data predictively correlated to said portion of said reference frame is defined based on the motion information. At least said portion of the predictable frame is encoded without including corresponding motion information and including mode identifying data. The mode identifying data indicate that the encoded portion of the predictable frame can be directly derived using at least the motion information associated with the portion of the reference frame.
Abstract:
Several improvements for use with Bidirectionally Predictive (B) pictures within a video sequence are provided. In certain improvements Direct Mode encoding and/or Motion Vector Prediction are enhanced using spatial prediction techniques. In other improvements Motion Vector prediction includes temporal distance and subblock information, for example, for more accurate prediction. Such improvements and other presented herein significantly improve the performance of any applicable video coding system/logic.
Abstract:
Several improvements for use with Bidirectionally Predictive (B) pictures within a video sequence are provided. In certain improvements Direct Mode encoding and/or Motion Vector Prediction are enhanced using spatial prediction techniques. In other improvements Motion Vector prediction includes temporal distance and subblock information, for example, for more accurate prediction. Such improvements and other presented herein significantly improve the performance of any applicable video coding system/logic.
Abstract:
A facility for using a mobile device to search video content takes advantage of computing capacity on the mobile device to capture input through a camera and/or a microphone, extract an audio-video signature of the input in real time, and to perform progressive search. By extracting a joint audio-video signature from the input in real time as the input is received and sending the signature to the cloud to search similar video content through the layered audio-video indexing, the facility can provide progressive results of candidate videos for progressive signature captures.