摘要:
Sensitivity is freely changeable to another one in correspondence to a photographing mode, and both still image photographing and moving image photographing for example which are largely different from each other in dosage of exposure to radiation and which are also different from each other in required sensitivity are carried out so as to meet that request. A source or drain electrode of a TFT 21 is connected to a signal output circuit 3 through a signal line 14a and an IC 5. A source/drain of a TFT 23 is connected to the signal output circuit 3 through a signal line 14b and the IC 5. Thus, in each pixel 6, any one of the signal lines 14a and 14b is freely selectable when a signal is read out.
摘要:
A conversion apparatus includes pixels including switching elements provided on an insulating substrate and conversion elements disposed over the switching elements and connected to the switching elements. Conductive lines are coupled to the pixels and have terminal elements for providing a connection to an external circuit. The terminal elements are disposed in a metal layer that is formed over the conversion elements. The conversion apparatus further includes a transparent conductive layer covering surfaces of the terminal elements, and a protective layer covering edges of the terminal elements and having openings.
摘要:
A radiation detecting apparatus according to the present invention includes: pixels including switching elements arranged on an insulating substrate and conversion elements arranged on the switching elements to convert a radiation into electric carriers, the switching elements and the conversion elements are connected with each other, the pixels two-dimensionally arranged on the insulating substrate in a matrix; gate wiring commonly connected with a plurality of switching elements arranged in a row direction on the insulating substrate; signal wiring commonly connected with a plurality of switching elements arranged in a column direction; and a plurality of insulating films arranged between the switching elements and the conversion elements, wherein at least one of the gate wiring and the signal wiring is arranged to be put between the plurality of insulating films.
摘要:
A conversion apparatus includes pixels including switching elements provided on an insulating substrate and conversion elements disposed over the switching elements and connected to the switching elements. Conductive lines are coupled to the pixels and have terminal elements for providing a connection to an external circuit. The terminal elements are disposed in a metal layer that is formed over the conversion elements. The conversion apparatus further includes a transparent conductive layer covering surfaces of the terminal elements, and a protective layer covering edges of the terminal elements and having openings.
摘要:
A radiation detecting apparatus according to the present invention includes: pixels including switching elements arranged on an insulating substrate and conversion elements arranged on the switching elements to convert a radiation into electric carriers, the switching elements and the conversion elements are connected with each other, the pixels two-dimensionally arranged on the insulating substrate in a matrix; gate wiring commonly connected with a plurality of switching elements arranged in a row direction on the insulating substrate; signal wiring commonly connected with a plurality of switching elements arranged in a column direction; and a plurality of insulating films arranged between the switching elements and the conversion elements, wherein at least one of the gate wiring and the signal wiring is arranged to be put between the plurality of insulating films.
摘要:
In a solid state image pickup apparatus with a photodetecting device and one or more thin film transistors connected to the photodetecting device formed in one pixel, a part of the photodetecting device is formed over at least a part of the thin film transistor, and the thin film transistor is constructed by a source electrode, a drain electrode, a first gate electrode, and a second gate electrode arranged on the side opposite to the first gate electrode with respect to the source electrode and the drain electrode, and the first gate electrode is connected to the second gate electrode every pixel, thereby, suppressing an adverse effect of the photodetecting device on the TFT, a leakage at turn-off TFT, variation in a threshold voltage of the TFT due to an external electric field, and accurately transferring photo carrier to a signal processing circuit.
摘要:
A radiographic imaging apparatus, comprising: a photoelectric conversion substrate including a pixel area where there are arranged a plurality of pixels each formed of a photoelectric conversion element and a switching element connected to the photoelectric conversion element in a matrix formed on an insulating substrate, a bias line for applying a bias to the photoelectric conversion element, a gate line for supplying a driving signal to the switching element, and a signal line for reading electric charges converted in the photoelectric conversion element; a wavelength conversion element for converting radiation to light that can be detected by the photoelectric conversion element, the wavelength conversion element being disposed according to a region including the pixel area; and connection wiring having a photoelectric conversion layer connected to at least a plurality of lines of one type, that one type being, the bias lines, the signal lines, and the gate lines, wherein at least a part of the connection wiring is arranged between the region on the insulating substrate and an edge of the insulating substrate. With this arrangement, it becomes possible to provide a panel for a radiographic imaging apparatus and a radiographic imaging apparatus free from deterioration in device performance and device destruction caused by a static electricity even if a substrate is electrically charged in a manufacturing process.
摘要:
A radiation imaging apparatus has a pixel region arranged on a substrate. Arranged in a matrix pattern in the pixel region are pixels, each pixel including a conversion element which converts radiation to electrical charges, and a switching element which is connected to the conversion element therein. The radiation imaging apparatus has, in a region outside the pixel region of the substrate, an intersection at which a signal line connected to the switching element and a bias line connected to the conversion element intersects. At the intersection, a semiconductor layer is arranged between the signal line and the bias line, and a carrier blocking portion is arranged between the semiconductor layer and the signal line.
摘要:
A stacked-type detection apparatus includes a plurality of pixels arranged in a matrix having row and column directions. Each pixel includes a conversion element configured to convert radiation or light into an electric charge, and a switch element configured to output an electric signal corresponding to the electric charge. A driving line is connected to switch elements arranged in the row direction, and a signal line is connected to switch elements arranged in the column direction. In each pixel, the conversion element is disposed above the switch element. The signal line is formed by a conductive layer embedded in an insulating layer located below an uppermost surface portion of a main electrode of the switch element located below an uppermost surface portion of the driving line located below the conversion element.
摘要:
A stacked-type detection apparatus includes a plurality of pixels arranged in a matrix having row and column directions. Each pixel includes a conversion element configured to convert radiation or light into an electric charge, and a switch element configured to output an electric signal corresponding to the electric charge. A driving line is connected to switch elements arranged in the row direction, and a signal line is connected to switch elements arranged in the column direction. In each pixel, the conversion element is disposed above the switch element. The signal line is formed by a conductive layer embedded in an insulating layer located below an uppermost surface portion of a main electrode of the switch element located below an uppermost surface portion of the driving line located below the conversion element.