Abstract:
Technology is disclosed for performing background initialization on protection information enabled storage volumes or drives. In some embodiments, a storage controller generates multiple I/O requests for stripe segments of each drive (e.g., disk) of multiple drives of a RAID-based system (e.g., RAID-based disk array). The I/O requests are then sorted for each of the drives according to a pre-determined arrangement and initiated in parallel to the disks while enforcing the pre-determined arrangement. Sorting and issuing the I/O requests in the manner described herein can, for example, reduce drive head movement resulting in faster storage subsystem initialization.
Abstract:
A system and method for maintaining operation of a storage array with one or more failed storage devices and for quickly recovering when failing devices are replaced are provided. In some embodiments, the method includes receiving a data transaction directed to a volume and determining that a storage device associated with the volume is inoperable. In response to determining that the storage device is inoperable, a data extent is recorded in a change log in a storage controller cache. The data extent is associated with the data transaction and allocated to the storage device that is inoperable. The data transaction is performed using at least one other storage device associated with the volume, and data allocated to the storage device is subsequently reconstructed using the recorded data extent.
Abstract:
Technology is disclosed for performing background initialization on protection information enabled storage volumes or drives. In some embodiments, a storage controller generates multiple I/O requests for stripe segments of each drive (e.g., disk) of multiple drives of a RAID-based system (e.g., RAID-based disk array). The I/O requests are then sorted for each of the drives according to a pre-determined arrangement and initiated in parallel to the disks while enforcing the pre-determined arrangement. Sorting and issuing the I/O requests in the manner described herein can, for example, reduce drive head movement resulting in faster storage subsystem initialization.
Abstract:
Systems and methods that make use of cluster-level redundancy within a distributed storage system to address various node-level error scenarios are provided. Rather than making use of a generalized one-size-fits-all approach in an effort to reduce complexity, an approach tailored to the node-level error scenario at issue may be performed to avoid doing more than necessary. According to one embodiment, responsive to identification of a failed RAID stripe by a node of a cluster of a distributed storage management system, for each block ID of multiple block IDs associated with the failed RAID stripe, a data block is restored corresponding to the block ID by reading the data block from another node of the cluster having a redundant copy of the data block; and writing the redundant copy of the data block to a storage area of the node that is unaffected by the failed RAID stripe.
Abstract:
Techniques are provided for implementing a defragmentation process during a merge operation performed by a re-compaction process upon a log structured merge tree. The log structured merge tree is used to store keys of key-value pairs within a key-value store. As the log structured merge tree fills with keys over time, the re-compaction process is performed to merge keys down to lower levels of the log structured merge tree to re-compact the keys. Re-compaction can result in fragmentation because there is a lack of spatial locality of where the re-compaction operations re-writes the keys within storage. Fragmentation increases read and write amplification when accessing the keys stored in different locations within the storage. Accordingly, the defragmentation process is performed during a last merge operation of the re-compaction process in order to store keys together within the storage, thus reducing read and write amplification when accessing the keys.
Abstract:
A system, method, and machine-readable storage medium for performing garbage collection in a distributed storage system are provided. In some embodiments, an efficiency level of a garbage collection process is monitored. The garbage collection process may include removal of one or more data blocks of a set of data blocks that is referenced by a set of content identifiers. The set of slice services and the set of data blocks may reside in a cluster, and a set of filters may indicate whether the set of data blocks is in-use. At least one parameter of a filter of the set of filters may be adjusted (e.g., increased or reduced) if the efficiency level is below the efficiency threshold. Garbage collection may be performed on the set of data blocks in accordance with the set of filters.
Abstract:
A system, method, and machine-readable storage medium for performing garbage collection in a distributed storage system are provided. In some embodiments, an efficiency level of a garbage collection process is monitored. The garbage collection process may include removal of one or more data blocks of a set of data blocks that is referenced by a set of content identifiers. The set of slice services and the set of data blocks may reside in a cluster, and a set of filters may indicate whether the set of data blocks is in-use. At least one parameter of a filter of the set of filters may be adjusted (e.g., increased or reduced) if the efficiency level is below the efficiency threshold. Garbage collection may be performed on the set of data blocks in accordance with the set of filters.
Abstract:
A system, method, and computer program product is described for providing dynamic enabling and/or disabling of protection information (PI) in array systems during operation. A storage system receives a request to transition a volume from PI disabled to PI enabled during regular operation. The storage system synchronizes and purges the cache associated with the target volume. The storage system initiates an immediate availability format (IAF-PI) process to initialize PI for the associated data blocks of the volume's storage devices. The storage system continues receiving I/O requests as the IAF-PI process sweeps through the storage devices. The storage system inserts and checks PI for the write data as it is written to the storage devices. The storage system inserts PI for requested data above the IAF-PI boundary and checks PI for requested data below the IAF-PI boundary. The transition remains an online process that avoids downtime.
Abstract:
Technology is disclosed for performing background initialization on protection information enabled storage volumes or drives. In some embodiments, a storage controller generates multiple I/O requests for stripe segments of each drive (e.g., disk) of multiple drives of a RAID-based system (e.g., RAID-based disk array). The I/O requests are then sorted for each of the drives according to a pre-determined arrangement and initiated in parallel to the disks while enforcing the pre-determined arrangement. Sorting and issuing the I/O requests in the manner described herein can, for example, reduce drive head movement resulting in faster storage subsystem initialization.
Abstract:
An I/O processing stack includes a proxy that can provide processing services for access requests to initialized and uninitialized storage regions. For a write request, the proxy stores write information in a write metadata repository. If the write is requested for an address in an initialized storage region of the storage system, the proxy performs a write to the initialized region based on region information in the write I/O access request. If the write is requested for an address in an uninitialized storage region of the storage system, the proxy performs an on-demand initialization of the storage region and then performs a write to the storage region based on region information provided by the proxy.