Abstract:
A lighting device may include a light radiation source board carrying at least one electrically powered light radiation source, e.g. a LED source, and a frame-like housing having a window, the board of the light radiation source being arranged in the housing with the light radiation source facing window.A glass cover covering the window is inserted in the housing by sliding along the housing or by tilting against the housing.
Abstract:
A method for passing an electrical cable through a hole in a housing of a unit of electrical equipment is provided. The method may include: fitting onto the cable a tubular, mushroom-shaped male member comprising a stem with a threaded portion and a portion with enlarged head; inserting into the hole the cable having the male member fitted thereon extending through said hole with said portion with enlarged head abutting against the periphery of the hole externally to the housing and said threaded portion protruding inside the housing; and retaining said male member in the hole by coupling with said threaded portion that protrudes inside the housing an annular female member in the form of a nut co-operating with the periphery of the hole inside said housing to counter the movement of the female member with respect to the housing.
Abstract:
A connector for connecting mutually facing ends of elongate lighting devices is provided. The connector includes a connector body having opposed end regions coupleable to the facing ends of said lighting devices. The connector body includes a light emission region between the opposed end regions.
Abstract:
A lighting device includes an elongated profiled body including at least one light permeable material, e.g. a polymeric material, having a mouth portion where an e.g. white light radiation source assembly is arranged which includes one or more electrically powered light radiation sources facing the profiled body. The light radiation emitted by the light radiation source assembly propagates through the light permeable material of the profiled body. The material of the profiled body includes pigments and is at least in part light diffusive, whereby, by propagating through profiled body, the light radiation becomes a coloured light radiation of a colour determined by the pigments and with a homogeneous near field distribution.
Abstract:
A method of producing cut-to-length flexible electrical cords includes providing a flexible strip having a plurality of electrically conductive lines extending along the strip, arranging along said strip a plurality of electrical connectors including a plurality of tubular electrical conductors extending in a bridge-like manner between two subsequent portions of one of the conductive lines of said plurality, separating a portion of a given length from said flexible strip by cutting at least one said connector in a transverse plane, thus cutting the plurality of tubular electrical conductors in the cut connector, whereby said portion separated from said flexible strip forms a flexible electrical cord having, at one end at least, a plurality of electrical connection holes or sockets exposed as a result of the cutting of said tubular conductors.
Abstract:
A connector for connecting mutually facing ends of elongate lighting devices is provided. The connector includes a connector body having opposed end regions coupleable to the facing ends of said lighting devices. The connector body includes a light emission region between the opposed end regions.
Abstract:
A lighting module includes a base, at least one electrically powered light radiation source carried by said base, a plurality of lamina electrical contacts connected to said light radiation source, and having respective proximal ends fixed to said base and respective distal ends elastically pressed against one face of said base, wherein the distal ends of said lamina electrical contacts have respective mutually offset contact areas.
Abstract:
A fastening device for fastening lighting devices to T-shaped profiles of a false ceiling. The fastening device may include a shaped flat body of electrically insulating material having conductive tracks embedded therein. The conductive tracks may have first ends and second ends that protrude from opposite ends of the flat body. The conductive tracks may be configured for establishing an electrical connection between a lighting device and a power supply source located above the false ceiling.
Abstract:
An end cap for elongate lighting modules having an exposed end surface and a front light emitting surface may include a body wall which may be brought into abutment against said end surface, and a peripheral wall extending sidewise of and around the body wall, the peripheral wall having a discontinuity therein positionable at the front light emitting surface. The body wall may include at least one sealing mass reception cavity facing towards the peripheral wall.
Abstract:
In various embodiments, a connector for a lighting device is provided. The lighting device has a planar support with at least one electrical contact formation at an edge of the planar support. The connector includes a fork-shaped shell with a notch coupleable with said planar support edge with said planar support edge inserted in said notch, and an electrical contact structure on at least one side of said notch configured to provide electrical contact with an electrical contact formation on said edge inserted in said notch.