Abstract:
Provided are a base station, a terminal, a band allocation method, and a downlink data communication method in which a mapping method for synchronization signals and report signals is implemented with high resource usage efficiency when a first system in which an independent single communication is allocated to a unit band co-exists with a second system in which a plurality of unit bands can be allocated to a single communication. In a base station, an OFDM signal generation unit maps primary synchronization channel (P-SCH), secondary synchronization channel (S-SCH), primary broadcast channel (P-BCH), and dynamic broadcast channel (D-BCH), which can be decoded by both an LTE terminal and an LTE+ terminal, to some of a plurality of unit bands. The OFDM signal generation unit also maps D-BCH+, which can be decoded only by an LTE+ terminal, to all of the plurality of unit bands to produce a multiplexed transmission signal.
Abstract:
Disclosed is a base station in which the frequency usage efficiency can be improved when the communication bandwidths are asymmetric in the uplink line and the downlink line. A base station can communicate by using a plurality of downlink unit bands and a smaller number of uplink unit bands. A control unit allocates uplink resource allocation information and downlink resource allocation information to a PDCCH which is arranged in each of the plurality of downlink unit bands, and allocates a response signal to the uplink line data to a PHICH which is arranged in the same number of downlink unit bands from the plurality of downlink unit bands as there are uplink unit bands. A transmit RF unit transmits the resource allocation information or the response signal.
Abstract:
A wireless communication base station apparatus which is able to prevent deterioration in the throughput of LTE terminals even when LTE terminals and LTE+ terminals coexist. In this apparatus, based on the mapping pattern of the reference signals used only in LTE+ terminals, a setting unit sets, in each subframe, the resource block groups where the reference signals used only by the LTE+ terminals are mapped. For symbols mapped to the antennas, an mapping unit maps, to all the resource blocks within one frame, cell specific reference signals used for both LTE terminals and LTE+ terminals. For the symbols mapped to the antennas, the mapping unit maps, to the plurality of resource blocks, of which part of the resource block groups is comprised, in the same subframe within one frame, the cell specific reference signals used only for LTE+ terminals, based on the setting results inputted from the setting unit.
Abstract:
A radio communication mobile station device reduces the number of blind decoding processes at a mobile station without increasing overhead by report information. The device includes a judgment unit which judges a particular PUCCH to which a response signal corresponding to the downstream line data is to be allocated among a plurality of PUCCH, according to a CCE occupied by PDCCH allocated to a particular search space corresponding to a CCE aggregation size of the PDCCH to which allocation information destined to the local station is allocated among search spaces changing in accordance with the CFI value; and a control unit which controls a cyclic shift amount of a ZAC sequence of the response signal and a block-wise spread code sequence according to a correspondence between CCE occupied by PDCCH allocated to a particular search space and a particular PUCCH resource, the correspondence changing in accordance with the CFI value.
Abstract:
Provided is a radio communication terminal which is capable of measuring quality in communication with a handover destination with high accuracy. The radio communication terminal is capable of communicating with a base station or a relay node, and includes: a receiver which receives control information including information relating to measurement of measuring quality of a neighbor cell; an extractor which extracts information on a subframe where the measurement should be performed, which is a subframe where only transmission of a signal from the relay node connected to the base station is performed, from the information relating to the measurement; a measurement section which performs the measurement, on a subframe basis, based on the extracted information on the subframe where the measurement should be performed; and a transmitter which transmits a result of the measurement to the base station or the relay node.
Abstract:
Provided are a terminal device and a retransmission control method that make it possible to minimize increases in overhead in an uplink control channel (PUCCH), even if channel selection is used as the method to transmit response signals during carrier-aggregation communication using a plurality of downlink unit bands. On the basis of the generation status of uplink data and error-detection results obtained by a CRC unit, a control unit in the provided terminal uses response signal transmission rules to control the transmission of response signals or uplink control signals that indicate the generation of uplink data. If an uplink control signal and a response signal are generated simultaneously within the same transmission time unit, the control unit changes the resources allocated to the response signal and/or the phase point of the response signal in accordance with the number and position of ACKs within the error-detection result pattern.
Abstract:
This transmission device can notify of a control value pertaining to transmission power without causing an increase in the amount of signaling. A control unit (103) controls transmission power based on a bit sequence notified from a reception device and the association between the bit sequence and a control value pertaining to transmission power; in the association, each bit sequence is respectively associated with a first control value candidate group and a second control value candidate group; when the device is not the subject of cooperative reception, the control unit (103) calculates a transmission power using a control value candidate associated with the notified bit sequence among the first control value candidate group, and when the device is the subject of cooperative reception, the control unit (103) calculates a transmission power using a control value candidate associated with the notified bit sequence among the second control value candidate group.
Abstract:
The present invention prevents an increased error rate, degradation of reception-quality estimation precision, and complication of control in an operation for independently controlling, for individual component carriers (CC), transmission timing of an uplink subframe. When a radio communication terminal device independently controls the subframe transmission timing for individual CCs, and a portion of the total transmission power where overlap exists between the trailing-end portion of a subframe of a CC and a leading-end portion of a subframe of another CC exceeds a tolerance, the terminal device controls the timing such that the transmission power of a symbol including the overlapping portion is reduced.
Abstract:
An appropriate MAC Control Element (CE) operation start timing control process is realized in an NTN system. A terminal 100 comprises: a wireless reception unit 106 that receives a MAC CE and an offset value (KMAC_ACTION, etc.); and a control unit 110 that, on the basis of the offset value, sets a slot for starting an operation based on a MAC CE control command.
Abstract:
The present disclosure provides a transceiver device and a scheduling device, and communication methods for transceiver device and scheduling device. The transceiver device comprises a transceiver, which, in operation, receives control information over a Physical Downlink Control Channel, PDCCH, the control information indicating a scheduled transmission of data; and circuitry, which, in operation, sets a monitoring period according to a number of blind retransmissions of the data, wherein the transceiver, in operation, monitors the PDCCH during the monitoring period.