Abstract:
A sequence allocating method and apparatus wherein in a system where a plurality of different Zadoff-Chu sequences or GCL sequences are allocated to a single cell, the arithmetic amount and circuit scale of a correlating circuit at a receiving end can be reduced. In ST201, a counter (a) and a number (p) of current sequence allocations are initialized, and in ST202, it is determined whether the number (p) of current sequence allocations is coincident with a number (K) of allocations to one cell. In ST203, it is determined whether the number (K) of allocations to the one cell is odd or even. If K is even, in ST204-ST206, sequence numbers (r=a and r=N−a), which are not currently allocated, are combined and then allocated. If K is odd, in ST207-ST212, for sequences that cannot be paired, one of sequence numbers (r=a and r=N−a), which are not currently allocated, is allocated.
Abstract:
Provided are a terminal device and a retransmission control method that make it possible to minimize increases in overhead in an uplink control channel (PUCCH), even if channel selection is used as the method to transmit response signals during carrier-aggregation communication using a plurality of downlink unit bands. On the basis of the generation status of uplink data and error-detection results obtained by a CRC unit, a control unit in the provided terminal uses response signal transmission rules to control the transmission of response signals or uplink control signals that indicate the generation of uplink data. If an uplink control signal and a response signal are generated simultaneously within the same transmission time unit, the control unit changes the resources allocated to the response signal and/or the phase point of the response signal in accordance with the number and position of ACKs within the error-detection result pattern.
Abstract:
A base station able to maintain backward compatibility with an LTE mobile station while minimizing the amount of increase in uplink scheduling information reception and demodulation/decoding processing in independent uplink/downlink cell data transmission. A wireless communication system includes a cell #1, a cell #2, and an LTE-A mobile station, and supports independent uplink/downlink cell data transmission. The base station of the cell #2 arranges a PDCCH+, which includes uplink scheduling information from the LTE-A mobile station to the base station of the cell #2, in a downlink data region in the downlink connection of the base station of the cell #1.
Abstract:
This invention relates to a terminal apparatus that can possibly reduce situations in which upstream channel data are punctured by a plurality of response signals. When having received at least one piece of downstream allocation control information corresponding to a second downstream unit band, which is other than a first downstream unit band, of a plurality of unit bands, a control unit (208) maps a plurality of response signals, which are corresponding to the respective ones of the plurality of downstream unit bands established, to a first resource corresponding to the plurality of downstream unit bands established. When having received only the downstream allocation control information corresponding to the first downstream unit band of the plurality of unit bands established, the control unit (208) maps the response signal, which is corresponding to the first downstream unit band, to a second resource corresponding to the first downstream unit band.
Abstract:
Provided is a radio communication device which can make Acknowledgement (ACK) reception quality and Negative Acknowledgement (NACK) reception quality to be equal to each other. The device includes: a scrambling unit (214) which multiplies a response signal after modulated, by a scrambling code “1” or “e−j(π/2)” so as to rotate a constellation for each of response signals on a cyclic shift axis; a spread unit (215) which performs a primary spread of the response signal by using a Zero Auto Correlation (ZAC) sequence set by a control unit (209); and a spread unit (218) which performs a secondary spread of the response signal after subjected to the primary spread, by using a block-wise spread code sequence set by the control unit (209).
Abstract:
Provided are a base station, a terminal, a band allocation method, and a downlink data communication method with which bands can be efficiently allocated. In a base station in which a plurality of unit bands can be allocated to a single communication, when a data receiver acquires terminal capability information transmitted by a terminal in the initial access unit band and the bandwidth available for communication indicated by the terminal capability information can accommodate a plurality of unit bands, a unit band group which includes the initial access unit band as well as the unit bands adjacent thereto is allocated to the terminal, and a communication band movement indication, which indicates the movement of the center frequency in the communication band of the terminal toward the center frequency in the unit band group, is transmitted to the terminal using the initial access unit band.
Abstract:
A wireless base station apparatus and wireless terminal apparatus with a configuration which can prevent reductions in the accuracy of channel estimation when non-contiguous band transmission and SRS transmission are employed in an uplink line. In the base station apparatus (100), an allocation setting unit (106), which sets the reception band of an SRS at an SRS extraction unit (103) and sets the units of frequency allocation (RBG) at a CQ1 estimation unit (104) and allocation unit (105), matches the frequency position at the end of the SRS reception band to the frequency position at the end of any of the units of frequency allocation and sets the reception bandwidth of the reference signal to a natural number multiple of the bandwidth of the unit of frequency allocation. In the terminal apparatus (200), a band information setting unit (204), which sets the transmission band and units of frequency allocation (RBG), matches the frequency position at the end of the transmission band to the frequency position at the end of any of the units of frequency allocation and sets the transmission bandwidth of the SRS to a natural number multiple of the bandwidth of the unit of frequency allocation.
Abstract:
Provided are a communication device and an SRS transmission method capable of reducing the possibility of a difference in recognition between the presence or absence of an SRS transmission between a base station and a terminal or of an SRS resource so as to prevent degradation of system throughput. At a terminal (200), a reception processing unit (203) detects control information indicating whether or not to request transmission of a sounding reference signal (SRS), whereupon a transmission signal forming unit (207) transmits an A-SRS by way of control by a transmission control unit (206) on the basis of control information. The transmission control unit (206) determines whether or not to execute SRS transmission on the basis of an “SRS Transmission Execution Rule” and the reception status of trigger information.
Abstract:
Provided is a radio communication device which can make Acknowledgement (ACK) reception quality and Negative Acknowledgement (NACK) reception quality to be equal to each other. The device includes: a scrambling unit (214) which multiplies a response signal after modulated, by a scrambling code “1” or “e−j(π/2)” so as to rotate a constellation for each of response signals on a cyclic shift axis; a spread unit (215) which performs a primary spread of the response signal by using a Zero Auto Correlation (ZAC) sequence set by a control unit (209); and a spread unit (218) which performs a secondary spread of the response signal after subjected to the primary spread, by using a block-wise spread code sequence set by the control unit (209).
Abstract:
Disclosed is a base station in which the frequency usage efficiency can be improved when the communication bandwidths are asymmetric in the uplink line and the downlink line. A base station can communicate by using a plurality of downlink unit bands and a smaller number of uplink unit bands. A control unit allocates uplink resource allocation information and downlink resource allocation information to a PDCCH which is arranged in each of the plurality of downlink unit bands, and allocates a response signal to the uplink line data to a PHICH which is arranged in the same number of downlink unit bands from the plurality of downlink unit bands as there are uplink unit bands. A transmit RF unit transmits the resource allocation information or the response signal.