摘要:
A method of operating a gasifier is provided that envisions dividing the gasifier into multiple zones. A high-calorific-value feedstock with an oxidant is injected in the first zone. The gasifier is operated to substantially consume the oxidant within the first gasification zone. The method of operating the gasifier further includes injecting a low-calorific-value, high-oxygen-content feedstock in a second gasification zone. The low-calorific-value, high-oxygen-content feedstock is devolatilized and gasified in second zone. A method of operation provides for a synergistic co-gasification of the high-calorific-value feedstock and the low-calorific-value, high oxidant content feedstock. The method provides for specific control actions that enable operation of multi-fuel, multizone gasifier.
摘要:
A plasma-assisted waste gasification system and process for converting waste stream reaction residues into a clean synthesis gas (syngas) is disclosed. The feedstock is fed into a reactor roughly one-third from the bottom through the use of a feed mechanism. The reactor has three zones; a bottom zone where melting occurs, a middle zone where gasification takes place, and a top zone with integrated plasma torches to control the temperature and polish the syngas. The residence times in the three zones are selected to optimize the syngas composition and melted products. The syngas leaves the reactor and is partially quenched with relatively cooler synthesis gas. The partially quenched syngas is further cooled to recover heat for steam generation and/or preheating the waste stream to the reactor. The cold syngas is then processed to remove pollutants. The clean synthesis gas is combusted in power generation equipment to generate electricity, or converted to other fuels by chemical processes.
摘要:
A method to reduce mercury in gas emissions from the combustion of coal is disclosed. Mercury emissions can be reduced by staging combustion process and/or reducing boiler excess oxygen. Fly ash formed under combustion staging conditions is more reactive towards mercury than fly ash formed under typical combustion conditions. Reducing boiler excess oxygen can also improve ability of fly ash to adsorb mercury.
摘要:
A method of decreasing the concentration of nitrogen oxides in a combustion flue gas is disclosed in which the nitrogen reducing agent, either in gaseous form, as small particles, or as small droplets of an aqueous solution, is introduced together with the overfire air in such a way that it mixes with the products of primary combustion along with the overfire air. The nitrogen agent reduced NOx as it passes through the temperature regime that is optimum for the NOx reduction as overfire air and flue gas mix. The transition from low to high temperature effectively eliminates ammonia slip. Additionally, the nitrogen agent may be mixed with the overfire air stream in such a manner that it is optimally shielded from early mixing with the products of primary combustion, where a portion of the overfire air reacts initially with any residual carbon monoxide (CO) that would otherwise interfere with the NOx reduction chemistry.
摘要:
A plasma-assisted waste gasification system and process for converting waste stream reaction residues into a clean synthesis gas (syngas) is disclosed. The feedstock is fed into a reactor roughly one-third from the bottom through the use of a feed mechanism. The reactor has three zones; a bottom zone where melting occurs, a middle zone where gasification takes place, and a top zone with integrated plasma torches to control the temperature and polish the syngas. The residence times in the three zones are selected to optimize the syngas composition and melted products. The syngas leaves the reactor and is partially quenched with relatively cooler synthesis gas. The partially quenched syngas is further cooled to recover heat for steam generation and/or preheating the waste stream to the reactor. The cold syngas is then processed to remove pollutants. The clean synthesis gas is combusted in power generation equipment to generate electricity, or converted to other fuels by chemical processes.
摘要:
A method to reduce emissions in flue gas due to combustion of coal in a combustion unit including the steps of: combusting coal in a primary combustion zone of the combustion unit; releasing elemental mercury from the combustion into the flue gas; injecting NH4Cl, NH4Br, or NH4I into the flue gas; oxidizing the elemental mercury with halogen from the additive; adsorbing the oxidized mercury generated by the combustion of the coal with an adsorbent in the flue gas, and collecting the adsorbent with the oxidized mercury in a combustion waste treatment system.
摘要:
This invention discloses the synergistic integration of solid fuel combustion, low NOx control technologies (such as Low NOx Burners, reburning and Advanced Reburning) with partial in-duct gasification of coal or other solid fuels. For partial gasification, the solid fuel can be transported and injected by recycled flue gas stream at 600-800° F. in the reburning zone or in the upper section of the main combustion zone of a boiler. This allows the fuel to be preheated and partially pyrolyzed and gasified in the duct and then injected into the boiler as a mixture of coal, gaseous products, and char. Gasification increases coal reactivity and results in lower carbon-in-ash levels. As an option, the gaseous and solid products can be split using a cyclone separator. Splitting the gasified fuel stream will allow the volatile matter to be used for reburning and the fixed carbon to be injected into the high-temperature main combustion zone.
摘要:
Methods and systems for reducing nitrogen oxides in combustion flue gas is provided. The method includes combusting a fuel in a main combustion zone such that a flow of combustion flue gas is generated wherein the combustion flue gas includes at least one nitrogen oxide species, establishing a fuel-rich zone, forming a plurality of reduced N-containing species in the fuel rich zone, injecting over-fire air into the combustion flue gas downstream of fuel rich zone, and controlling process parameters to provide conditions for the reduced N-containing species to react with the nitrogen oxides in the OFA zone to produce elemental nitrogen such that a concentration of nitrogen oxides is reduced.
摘要:
The methods and systems of the present invention reduce NOx emissions in combustion systems, e.g., power plants, boilers, furnaces, incinerators, engines, and any combinations thereof. The inventive process decreases NOx emissions from stationary combustion sources and provides improved utilization of low-grade biomass and other waste fuels without slagging and fouling problems. The invention reduces NOx emissions while utilizing gasified fuels, including biomass and low-grade waste fuels, by gasifying solid fuels and injecting produced gas into a reburning zone of, for example, a boiler at relatively low temperatures and in relatively small amounts. By feeding the gas directly into a reburning zone, the need for gas cleaning is eliminated or substantially reduced as tars are burned in the flame and alkali species may be present at much lower levels than is the case with direct combustion applications.