Abstract:
This invention relates to an apparatus and method for performing bidirectional Raman spectroscopy of a sample, preferably a diffusely scattering sample, in which two excitation light sources are employed to illuminate the sample from two opposite directions to excite Raman scattering signal from the sample. The Raman scattering signal which transmits through the sample are collected by two optical devices each positioned on the opposite side of the sample to obtain two transmission Raman spectra of the sample, which enables the accurate determination of the composition of the whole sample.
Abstract:
A system and method for determining the composition of a sample is provided. The system and method according to the present invention comprises: obtaining one or more spectra of the sample; obtaining one or more spectra of one or more target materials; pre-process the sample and the target spectra; providing a variable reduction means that combines certain contiguous spectral variables into a single variable, wherein the intensities of the said single variable is the sum of the intensities of the said spectral variables to be combined; determining an average spectrum and the statistic distribution of the sample and/or each of the target material in the reduced dimension; determining the likelihood the sample had the same composition of each of the one or more target material; and displaying the list of the most likely target material to a user.
Abstract:
Identifying a location of a mobile device is disclosed (e.g., presuming user consent to the same). One or more received signal strengths (RSSs), comprising a first RSS, may be received by a first access point (AP) from the mobile device. The RSSs may be used to identify a grid area, comprising a first grid space. A signal distance between the first grid space and the first AP may be identified using the first RSS, and combined with a first grid space distance, comprising a known distance between the first grid space and the first AP, to determine a first grid space likelihood score for the first grid space. A second grid space likelihood score may be determined for a second grid space (e.g., and a third, etc.), and the grid space comprising a desired grid space likelihood score (e.g., highest) may be selected as the mobile device location.
Abstract:
A method, an apparatus and a system for detecting a connection status of an optical fiber jumper are provided in the embodiments of the present invention. The method for detecting a connection status of an optical fiber jumper includes: judging a connection status of a second port and a first port according to whether an optical signal sent by the first port to the second port through a first optical fiber is received, wherein the first optical fiber is connected to two ends of an optical fiber jumper, and the two ends of the optical fiber jumper are connected to the first port and the second port respectively; and obtaining a port identification corresponding to the first port according to the optical signal if the optical signal is received.
Abstract:
A container data center is disclosed in the present invention, relating to the field of data centers. The container data center includes: a container box, in which the inside of the box is divided into an equipment compartment, a power supply and distribution compartment and a water chilling set compartment; doors set in the box; a power supply equipment installed in the power supply and distribution compartment; an electronic equipment and a water chilling terminal installed in the equipment compartment; a water chilling set installed in the water chilling set compartment, in which the water chilling set is in communication with the water chilling terminal to provide cold water for the water chilling terminal.
Abstract:
The present invention discloses a method and system for transferring TDM services in GPON, the method includes the steps of: in the case of performing the GPON ranging process, buffering the uplink TDM service data received by an optical signal transceiver in an Input Buffer, reading out and transferring the uplink TDM service data buffered in an Output Buffer. The present invention eliminates the possible interruption of TDM services during the GPON ranging process by buffering the uplink services at the OLT and ONU/ONT side and relevant processes, and therefore realizes the TDM service transmission without any loss during the GPON system ranging process.
Abstract:
Identifying a location of a mobile device is disclosed (e.g., presuming user consent to the same). One or more received signal strengths (RSSs), comprising a first RSS, may be received by a first access point (AP) from the mobile device. The RSSs may be used to identify a grid area, comprising a first grid space. A signal distance between the first grid space and the first AP may be identified using the first RSS, and combined with a first grid space distance, comprising a known distance between the first grid space and the first AP, to determine a first grid space likelihood score for the first grid space. A second grid space likelihood score may be determined for a second grid space (e.g., and a third, etc.), and the grid space comprising a desired grid space likelihood score (e.g., highest) may be selected as the mobile device location.
Abstract:
One or more techniques and/or systems are disclosed for identifying a location of a mobile device (e.g., with user consent). A set of one or more indications of received signal strength (RSS) may be received, comprising a first RSS from a first access point (AP). The set of RSS indications may be used to identify a grid area, comprising a first grid space. An expected distance between the first grid space and the first AP may be identified using the first RSS. The expected distance can be combined with a first known distance between the first grid space and the first AP to determine a first grid score for the first grid space. A second grid score may be determined for a second grid space (e.g., and a third, fourth, etc.), and the grid space comprising a desired grid score (e.g., highest) may be selected as the mobile device location.
Abstract:
Among other things, one or more techniques and/or systems are disclosed for identifying a proximate beacon to a mobile device. One or more first received signal strengths (RSSs), relative to the mobile device, may be received and used to determine a first average signal strength (RSS) and a first average RSS deviation for a first beacon during an observation period. An average RSS deviation for the observation period can be determined using the first average RSS deviation (e.g., and other average RSS deviations). If the average RSS deviation meets a desired deviation threshold, the first beacon may be identified as the proximate beacon. In this manner, if the user of the mobile device consents to the same, the user may be provided with relevant information (e.g., advertisements) on the mobile device while in a locale (e.g., store) corresponding to the (known) location of the beacon, for example.
Abstract:
A panel for ventilation and noise reduction and its manufacturing method are disclosed A left side and a right side of the panel each include one or a plurality of ventilation holes, and a sound insulation board for sound insulation is set near each ventilation hole along an inner side of the panel, so that at least certain sound from the inner of the electronic device needs to bypass the board to pass through the ventilation holes; and the ventilation hole on the left side and the right side of the panel are opened in a staggered position, so that when the panel is placed side by side with another panel, air exhausted from a ventilation hole at an adjacent side of the panel does not form strong face-to-face blowing interference with air exhausted from a ventilation hole at an adjacent side of another panel.