摘要:
A method of forming a fin field effect transistor on a semiconductor substrate includes forming an active region in the substrate, forming an epitaxial layer on the active region, and removing a portion of the epitaxial layer to form a vertical fin on the active region. The fin has a width that is narrower than a width of the active region. Removing a portion of the epitaxial layer may include oxidizing a surface of the epitaxial layer and then removing the oxidized surface of the epitaxial layer to decrease the width of the fin. The epitaxial layer may be doped in situ before removing a portion of the epitaxial layer. The method further includes forming a conductive layer on a top surface and on sidewalls of the fin. Related transistors are also discussed.
摘要:
A field effect transistor includes a vertical fin-shaped semiconductor active region having an upper surface and a pair of opposing sidewalls on a substrate, and an insulated gate electrode on the upper surface and opposing sidewalls of the fin-shaped active region. The insulated gate electrode includes a capping gate insulation layer having a thickness sufficient to preclude formation of an inversion-layer channel along the upper surface of the fin-shaped active region when the transistor is disposed in a forward on-state mode of operation. Related fabrication methods are also discussed.
摘要:
Methods for forming semiconductor devices are provided. A semiconductor substrate is etched such that the semiconductor substrate defines a trench and a preliminary active pattern. The trench has a floor and a sidewall. An insulating layer is provided on the floor and the sidewall of the trench and a spacer is formed on the insulating layer such that the spacer is on the sidewall of the trench and on a portion of the floor of the trench. The insulating layer is removed on the floor of the trench and beneath the spacer such that a portion of the floor of the trench is at least partially exposed, the spacer is spaced apart from the floor of the trench and a portion of the preliminary active pattern is partially exposed. A portion of the exposed portion of the preliminary active pattern is partially removed to provide an active pattern that defines a recessed portion beneath the spacer. A buried insulating layer is formed in the recessed portion of the active pattern. Related devices are also provided.
摘要:
A method of forming a semiconductor device may include forming a fin structure extending from a substrate. The fin structure may include first and second source/drain regions and a channel region therebetween, and the first and second source/drain regions may extend a greater distance from the substrate than the channel region. A gate insulating layer may be formed on the channel region, and a gate electrode may be formed on the gate insulating layer so that the gate insulating layer is between the gate electrode and the channel region. Related devices are also discussed.
摘要:
Methods of forming integrated circuit devices include forming an electrically insulating layer having a semiconductor fin structure extending therethrough. This semiconductor fin structure may include at least one amorphous and/or polycrystalline semiconductor region therein. The at least one amorphous and/or polycrystalline semiconductor region within the semiconductor fin structure is then converted into a single crystalline semiconductor region. This semiconductor fin structure is then used as an active region of a semiconductor device.
摘要:
In a method of forming a single crystalline semiconductor layer, an amorphous layer may be formed on a seed layer that includes a single crystalline material. The single crystalline layer may be formed from the amorphous layer by irradiating a laser beam onto the amorphous layer using the seed layer as a seed for a phase change of the amorphous layer. The laser beam may have an energy for melting the amorphous layer, and the laser beam may be irradiated onto the amorphous layer without generating a superimposedly irradiated region of the amorphous layer. The single crystalline layer may include a high density of large-sized grains without generating a protrusion thereon through a simple process so that a semiconductor device including the single crystalline layer may have a high degree of integration and improved electrical characteristics.
摘要:
In a method of forming a single crystalline semiconductor layer, an amorphous layer may be formed on a seed layer that includes a single crystalline material. The single crystalline layer may be formed from the amorphous layer by irradiating a laser beam onto the amorphous layer using the seed layer as a seed for a phase change of the amorphous layer. The laser beam may have an energy for melting the amorphous layer, and the laser beam may be irradiated onto the amorphous layer without generating a superimposedly irradiated region of the amorphous layer. The single crystalline layer may include a high density of large-sized grains without generating a protrusion thereon through a simple process so that a semiconductor device including the single crystalline layer may have a high degree of integration and improved electrical characteristics.
摘要:
In a method of forming a diode, a first amorphous thin film doped with first impurities is formed on a single crystalline substrate. A second amorphous thin film doped with second impurities is formed on the first amorphous thin film. A laser beam having sufficient energy to melt both of the first and second amorphous thin films is irradiated on the first and second amorphous thin films to change crystal structures of the first and second amorphous thin films using the single crystalline substrate as a seed, so that first and second single crystalline thin films are sequentially formed on the single crystalline substrate.
摘要:
A memory cell transistor includes a semiconductor substrate having a first impurity region of first conductivity type (e.g., N-type) therein. A U-shaped semiconductor layer having a second impurity region of first conductivity type therein is provided on the first impurity region. A gate insulating layer is provided, which lines a bottom and an inner sidewall of the U-shaped semiconductor layer. A gate electrode is provided on the gate insulating layer. The gate electrode is surrounded by the inner sidewall of the U-shaped semiconductor layer. A word line is provided, which is electrically coupled to the gate electrode, and a bit line is provided, which is electrically coupled to the second impurity region.
摘要:
Fin-Field Effect Transistors (Fin-FETs) are provided. A fin is provided on an integrated circuit substrate. The fin defines a trench on the integrated circuit substrate. A first insulation layer is provided in the trench such that a surface of the first insulation layer is recessed beneath a surface of the fin exposing sidewalls of the fin. A protection layer is provided on the first insulation layer and a second insulation layer is provided on the protection layer in the trench such that protection layer is between the second insulation layer and the sidewalls of the fin.