Abstract:
According to the present disclosure, CSI and/or a plurality of ACKs related to a group of DL data transmissions may be buffered at the UE as a GACK until a DCI trigger is received from the eNB. Once the trigger is received, the UE may transmit the CSI and/or GACK to the eNB. In this way HARQ feedback and/or CSI may be reliably communicated while reducing payload. In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus send, to a UE, data transmissions associated with a first plurality of downlink subframes. In an aspect, the apparatus increments a counter for each data transmission sent to the UE. In a further aspect, the apparatus transmits, to the UE, a first trigger for a first GACK when a counter is greater than or equal to a threshold.
Abstract:
The present disclosure provides methods and apparatuses for multi-carrier transmissions over adjacent channels that reduce self-jamming due to asymmetric interference. In an aspect, a large bandwidth load-base equipment (LBE) carrier may be provided such that CCA is performed jointly over the entire bandwidth. In another aspect, additional CCA timeslots may be used to synchronize the two carriers. In a further aspect, an extended CCA may be performed on a primary unlicensed carrier while a simple CCA may be performed on a secondary unlicensed carrier. In yet another aspect, LBE may be deployed on some carriers while frame-base equipment (FBE) may be deployed on other carriers.
Abstract:
Methods, systems, and devices are described for managing network communication between a UE and network equipment. The communication between the UE and the network equipment may be established over a first radio access technology (RAT) and a second RAT, and a coupling between the first RAT and the second RAT may be identified in the communication between the UE and the network equipment. At least one of a reselection procedure or a handover procedure for at least one of the RATs may be adapted based on the identified coupling between the first RAT and the second RAT.
Abstract:
Certain aspects of the present disclosure provide techniques for controlling transmission power in shared radio frequency spectrum (SRFS). According to techniques, devices (e.g., BSs, UEs, etc.) transmitting in SRFS band may win contention to the SRFS band for at least a portion of a radio frame period. For example, the radio frame period may include a plurality of subframe periods. The devices may also transmit a first signal at a first transmit power during a first subframe period of the radio frame period and transmit a second signal at a second transmit power during a second subframe period of the radio frame period. For example, the first transmit power and second transmit power may be controlled based, at least in part, on a power level determined for the radio frame period.
Abstract:
Techniques are described for wireless communication. One method includes monitoring, by a first base station of a first operator, for uplink configuration information and downlink configuration information associated with a second base station of at least one second operator; identifying a transmission timing of one or more uplink transmissions to the second base station of the at least one second operator based at least in part on the uplink configuration information; and prohibiting access to an unlicensed radio frequency spectrum band by the first base station of the first operator during the identified transmission timing of the one or more uplink transmissions. Transmissions of the second base station of the at least one second operator in the unlicensed radio frequency spectrum band may be asynchronous to transmissions of the first base station of the first operator in the unlicensed radio frequency spectrum band.
Abstract:
Techniques are described for wireless communication. One method includes monitoring, by a first base station of a first operator, for clear channel assessment (CCA) exempt transmission (CET) timing information of a second base station of a second operator; identifying transmission timings of CETs of the second base station of the second operator based at least in part on the monitoring; and discontinuing transmissions of the first base station of the first operator during the transmission timings of the CETs of the second base station of the second operator. Transmissions of the second base station of the second operator may be asynchronous to transmissions of the first base station of the first operator.
Abstract:
According to the present disclosure, CSI and/or a plurality of ACKs related to a group of DL data transmissions may be buffered at the UE as a GACK until a DCI trigger is received from the eNB. Once the trigger is received, the UE may transmit the CSI and/or GACK to the eNB. In this way HARQ feedback and/or CSI may be reliably communicated while reducing payload. In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus send, to a UE, data transmissions associated with a first plurality of downlink subframes. In an aspect, the apparatus increments a counter for each data transmission sent to the UE. In a further aspect, the apparatus transmits, to the UE, a first trigger for a first GACK when a counter is greater than or equal to a threshold.
Abstract:
Techniques are described for wireless communication. A first method may include inserting, in a first transmission using a first radio access technology (RAT), a channel occupancy identifier for a second transmission using a second RAT. The first method may also include transmitting the first transmission having the channel occupancy identifier over an unlicensed radio frequency spectrum band. A second method may include receiving, at a receiver operated using a first RAT, a channel occupancy identifier for a transmission using a second RAT. The channel occupancy identifier may be received over an unlicensed radio frequency spectrum band. The second method may also include decoding the channel occupancy identifier to identify a backoff period, and refraining from accessing the unlicensed radio frequency spectrum band using the first RAT based at least in part on the identified backoff period.
Abstract:
Mitigation of inter-base station resynchronization loss in wireless networks including contention-based shared frequency spectrum is discussed. Aspects of such mitigation provide for base stations entering into an idle mode when a transmission opportunity occurs in a radio frame of the next resynchronization occasion. Additional aspects provide for the base station to signal a flexible listen before talk (LBT) frame length to the user equipment (UE), either with or without explicit signaling of the downlink-uplink division. Further aspects provide for the base station to signal a reset indication to UEs that will prompt the UEs to monitor for downlink channel reserving signals prior to the current LBT frame ending by the resynchronization occasion.
Abstract:
Techniques are described for wireless communication. One method includes monitoring, by a first base station of a first operator, for clear channel assessment (CCA) exempt transmission (CET) timing information of a second base station of a second operator; identifying transmission timings of CETs of the second base station of the second operator based at least in part on the monitoring; and discontinuing transmissions of the first base station of the first operator during the transmission timings of the CETs of the second base station of the second operator. Transmissions of the second base station of the second operator may be asynchronous to transmissions of the first base station of the first operator.