摘要:
A method of fabrication and a field effect device structure are presented that reduce source/drain capacitance and allow for device body contact. A Si based material pedestal is produced, the top surface and the sidewalls of which are oriented in a way to be substantially parallel with selected crystallographic planes of the pedestal and of a supporting member. The pedestal is wet etched with an anisotropic solution containing ammonium hydroxide. The sidewalls of the pedestal become faceted forming a segment in the pedestal with a reduced cross section. The dopant concentration in the reduced cross section segment is chosen to be sufficiently high for it to provide for electrical continuity through the pedestal.
摘要:
A vertical pass transistor used in a DRAM cell for maintaining a low total leakage current and providing adequate drive current is described together with a method of fabricating such a device. The transistor gate is engineered in lieu of the channel. The vertical pass transistor for the DRAM cell incorporates two gate materials having different work functions. The gate material near the storage node is n-type doped polysilicon. The gate material near the bit line diffusion is made of silicide or metal having a higher work function than the n-polysilicon. The novel device structure shows several advantages: the channel doping is reduced while maintaining a high Vt and a low sub-threshold leakage current; the carrier mobility improves with the reduced channel doping; the body effect of the device is reduced which improves the write back current; and the sub-threshold swing is reduced because of the low channel doping.
摘要:
A structure and method of forming a notched gate MOSFET. A gate dielectric is formed on the surface of an active area on the semiconductor substrate. A layer of polysilicon is then deposited on the gate dielectric. This step is followed by depositing a layer of silicon germanium. The sidewalls of the polysilicon layer are then laterally etched, selective to the SiGe layer to create a notched gate conductor structure, with the SiGe layer being broader than the underlying polysilicon layer. Sidewall spacers are preferably formed on sidewalls of the SiGe layer and the polysilicon layer. A silicide layer is preferably formed as a self-aligned silicide from a polysilicon layer deposited over the SiGe layer. One or more other processing steps are preferably performed in completing the transistor.
摘要:
Embodiments of apparatuses, systems, and methods for a temporal hole filling are described. Specifically, an embodiment of the present invention may include a depth-based hole filling process that includes a background modeling technique (SGM). Beneficially, in such an embodiment, holes in the synthesized view may be filled effectively and efficiently.
摘要:
A method of fabrication and a field effect device structure are presented that reduce source/drain capacitance and allow for device body contact. A Si based material pedestal is produced, the top surface and the sidewalls of which are oriented in a way to be substantially parallel with selected crystallographic planes of the pedestal and of a supporting member. The pedestal is wet etched with an anisotropic solution containing ammonium hydroxide. The sidewalls of the pedestal become faceted forming a segment in the pedestal with a reduced cross section. The dopant concentration in the reduced cross section segment is chosen to be sufficiently high for it to provide for electrical continuity through the pedestal.
摘要:
A method is presented for fabricating a non-planar field effect device. The method includes the production of a Si based material Fin structure that has a top surface substantially in parallel with a {111} crystallographic plane of the Si Fin structure, and the etching of the Si Fin structure with a solution which contains ammonium hydroxide (NH4OH). In this manner, due to differing etch rates in ammonium hydroxide of various Si based material crystallographic planes, the corners on the Fin structure become clipped, and angles between the horizontal and vertical planes of the Fin structure increase. A FinFET device with clipped, or rounded, corners is then fabricated to completion. In a typical embodiment the FinFET device is selected to be a silicon-on-insulator (SOI) device.
摘要:
A vertical pass transistor used in a DRAM cell for maintaining a low total leakage current and providing adequate drive current is described together with a method of fabricating such a device. The transistor gate is engineered in lieu of the channel. The vertical pass transistor for the DRAM cell incorporates two gate materials having different work functions. The gate material near the storage node is n-type doped polysilicon. The gate material near the bit line diffusion is made of silicide or metal having a higher work function than the n-polysilicon. The novel device structure shows several advantages: the channel doping is reduced while maintaining a high Vt and a low sub-threshold leakage current; the carrier mobility improves with the reduced channel doping; the body effect of the device is reduced which improves the write back current; and the sub-threshold swing is reduced because of the low channel doping.
摘要:
Disclosed is a hair conditioning composition comprising: a cationic surfactant; a high melting point fatty compound; and an aqueous carrier; wherein the cationic surfactant, the high melting point fatty compound, and the aqueous carrier form a lamellar gel matrix; wherein the d-spacing of the lamellar layers is in the range of 33 nm or less; and wherein the composition has a yield stress of about 30 Pa or more at 26.7° C. The composition of the present invention can provide improved conditioning benefits, especially improved slippery feel during the application to wet hair.
摘要:
An N-channel metal oxide semiconductor (NMOS) driver circuit (and method for making the same), includes a boost gate stack formed on a substrate and having a source and drain formed by a low concentration implantation, and an N-driver coupled to the boost gate stack.
摘要:
A short channel insulated gate field effect transistor has within the semiconductor body that houses the transistor a buried layer of the same conductivity type as the body but of higher impurity concentration. The buried layer is below the channel region and essentially extends only the distance between the drain and source regions of the transistor. The process to form the device provides high concentration in the region under the gate to suppress lateral depletion region expansion, while keeping a gradual junction in the vertical direction.