Abstract:
A method for the production of a one piece piston for an internal combustion engine. The piston has a ring shaped cooling channel arranged in an outer region of a piston head. The channel is partially closed off by a circumferential projection structured as an oil groove. The piston is produced in a simple and inexpensive manner using a piston blank using cutting work such as lathing.
Abstract:
A multipart cooled piston for an internal combustion engine comprises an upper part and a lower part of the piston. The two parts are screwed together via a threaded bolt that is arranged on the upper part of the piston, and a threaded bore that is drilled into the lower part of the piston. The threaded bore is arranged in an area of the lower part of the piston that is thin-walled to such a degree that it is deformed like a plate spring as the two parts of the piston are screwed together, so that no other safety means such as a lock nut are required for securing the assembled piston.
Abstract:
A piston for an internal combustion engine has a piston head and a piston skirt. The piston head has a circumferential ring belt and a circumferential cooling channel. The piston skirt has a working surface assigned to its major thrust side and to its minor thrust side. A bore that proceeds from the cooling channel is provided, which ends in the working surface assigned to the major thrust side, and is disposed at an incline, in such a manner that the bore exit encloses an acute angle (α) with the center axis (M) of the piston. An opening is formed in the working surface, and a deflection surface inclined relative to the working surface is provided between the bore and the bore exit. The working surface assigned to the major thrust side has a depression which forms at least one oil capture region above the opening.
Abstract:
The present invention relates to a piston (10) for an internal combustion engine, having an outer circumferential cooling channel (19) and an inner cooling cavity (21), the cooling cavity bottom (22) of which has an opening (23) that is closed off with a separate closure element (33) that has at least one cooling oil opening (35), whereby the closure element (33) is held, in clamped manner, by means of two engagement elements (37) disposed on the outer edge, in at least one engagement groove (34) provided in the region of the opening (23) of the cooling cavity bottom (22). According to the invention, it is provided that the closure element (33) has at least two spring tabs (38) that support themselves on a contact surface (39) provided in the piston interior, in each instance, in such a manner that the closure element (33) is held in the engagement groove (34) under axial bias.
Abstract:
The present invention relates to a multi-part piston (10, 110) for an internal combustion engine, having an upper piston part (11, 111) having a piston crown (13), and a lower piston part (12), whereby the lower piston part (12) has pin boss supports (32) and pin bosses (18) connected with them, whereby the upper piston part (11) and the lower piston part (12) each have an inner (21, 25) and an outer (22, 26) support element, which elements delimit an outer circumferential cooling channel (29). According to the invention, it is provided that the inner support elements (21, 25) delimit a cavity (31) that is open toward the pin bosses (18), and that the cavity (31) is provided with a separate cooling oil collector (35, 135) that has at least one cooling oil opening (37, 38). The present invention furthermore relates to a method for the production of such a piston.
Abstract:
Proposed is a multi-part cooled piston (1) for an internal combustion engine, which piston (1) is composed of an upper piston part (2) and a lower piston part (6). The upper piston part (2) forms an inner annular cooling duct (11) with the lower piston part (6), which cooling duct (11) is covered by an upper region (31) of the lower piston part (6). The region (31) is of thin-walled design in such a way that it can be deformed in the manner of a plate spring. Simple and fast assembly of the upper piston part (2) on the lower piston part (6), and a fixed and secure screw connection between the two piston parts, result in that the upper piston part (2) is provided on its underside with a blind bore (26) which is arranged centrally and coaxially with respect to the piston axis (25) and has an internal thread (28), and in that the upper region (31) of the lower piston part (6) has a threaded bolt (29) which is arranged centrally and coaxially with respect to the piston axis (25), points upward and has an external thread (30), with the internal thread (28) matching the external thread (30), such that the upper piston part (2) can be screwed to the lower piston part (6) by means of the blind bore (26) and the threaded bolt.
Abstract:
A two-part piston for an internal combustion engine consists of an upper part, a lower part and a circumferential, closed cooling channel radially on the outside and close to the piston crown. The channel is closed off, on its underside, by a cooling channel cover which is connected via a skirt connection with two skirt elements that lie opposite one another. In order to reduce the piston weight and nevertheless avoid secondary movements of the piston, circumferential recesses are provided in the region of the skirt elements, which are delimited by the cooling channel cover on the piston crown side and by the skirt connections on the skirt side. The skirt connections are connected with the radially inner region of the cooling channel cover on the piston crown side, and with the upper regions of the skirt elements on the skirt side.
Abstract:
The present invention relates to a multi-part piston (10, 110) for an internal combustion engine, having an upper piston part (11, 111) having a piston crown (13), and a lower piston part (12), whereby the lower piston part (12) has pin boss supports (32) and pin bosses (18) connected with them, whereby the upper piston part (11) and the lower piston part (12) each have an inner (21, 25) and an outer (22, 26) support element, which elements delimit an outer circumferential cooling channel (29). According to the invention, it is provided that the inner support elements (21, 25) delimit a cavity (31) that is open toward the pin bosses (18), and that the cavity (31) is provided with a separate cooling oil collector (35, 135) that has at least one cooling oil opening (37, 38). The present invention furthermore relates to a method for the production of such a piston.
Abstract:
The present invention relates to a multi-part piston (10) for an internal combustion engine, having an upper piston part (11) having a piston crown (13), and a lower piston part (12), whereby the lower piston part (12) has pin boss supports (32) and pin bosses (18) connected with them, whereby the upper piston part (11) and the lower piston part (12) each have an inner (21, 25) and an outer (22, 26) support element, which elements delimit an outer circumferential cooling channel (29). According to the invention, it is provided that the inner support elements (21, 25) delimit a cavity (31) that is open toward the pin bosses (18), and that the cavity (31) is provided with a separate cooling oil collector (35) that has at least one cooling oil opening (37, 38).
Abstract:
The invention relates to a method for producing a piston (1) for an internal combustion engine. The inventive method comprises producing the base (4) from aluminum by a forging process, casting, by way of a composite casting process, a ring support (10) which is provided with a cooling channel (15) into an aluminum ring element (6), and then welding the ring element (6) with the base (4).