摘要:
A compositionally-graded quantum well channel for a semiconductor device is described. A semiconductor device includes a semiconductor hetero-structure disposed above a substrate and having a compositionally-graded quantum-well channel region. A gate electrode is disposed in the semiconductor hetero-structure, above the compositionally-graded quantum-well channel region. A pair of source and drain regions is disposed on either side of the gate electrode.
摘要:
Embodiments of the invention relate to apparatus, system and method for use of a memory cell having improved power consumption characteristics, using a low-bandgap material quantum well structure together with a floating body cell.
摘要:
Techniques and structures for increasing body dopant uniformity in multi-gate transistor devices are generally described. In one example, an electronic device includes a semiconductor substrate, a multi-gate fin coupled with the semiconductor substrate, the multi-gate fin comprising a source region, a drain region, and a gate region wherein the gate region is disposed between the source region and the drain region, the gate region being body-doped after a sacrificial gate structure is removed from the multi-gate fin and before a subsequent gate structure is formed, a dielectric material coupled with the source region and the drain region of the multi-gate fin, and the subsequent gate structure coupled to the gate region of the multi-gate fin.
摘要:
Embodiments described include straining transistor quantum well (QW) channel regions with metal source/drains, and conformal regrowth source/drains to impart a uni-axial strain in a MOS channel region. Removed portions of a channel layer may be filled with a junction material having a lattice spacing different than that of the channel material to causes a uni-axial strain in the channel, in addition to a bi-axial strain caused in the channel layer by a top barrier layer and a bottom buffer layer of the quantum well.
摘要:
A quantum well (QW) layer is provided in a semiconductive device. The QW layer is provided with a beryllium-doped halo layer in a barrier structure below the QW layer. The semiconductive device includes InGaAs bottom and top barrier layers respectively below and above the QW layer. The semiconductive device also includes a high-k gate dielectric layer that sits on the InP spacer first layer in a gate recess. A process of forming the QW layer includes using an off-cut semiconductive substrate.
摘要:
Techniques and structures for increasing body dopant uniformity in multi-gate transistor devices are generally described. In one example, an electronic device includes a semiconductor substrate, a multi-gate fin coupled with the semiconductor substrate, the multi-gate fin comprising a source region, a drain region, and a gate region wherein the gate region is disposed between the source region and the drain region, the gate region being body-doped after a sacrificial gate structure is removed from the multi-gate fin and before a subsequent gate structure is formed, a dielectric material coupled with the source region and the drain region of the multi-gate fin, and the subsequent gate structure coupled to the gate region of the multi-gate fin.
摘要:
A quantum well (QW) layer is provided in a semiconductive device. The QW layer is provided with a beryllium-doped halo layer in a barrier structure below the QW layer. The semiconductive device includes InGaAs bottom and top barrier layers respectively below and above the QW layer. The semiconductive device also includes a high-k gate dielectric layer that sits on the InP spacer first layer in a gate recess. A process of forming the QW layer includes using an off-cut semiconductive substrate.
摘要:
Embodiments described include straining transistor quantum well (QW) channel regions with metal source/drains, and conformal regrowth source/drains to impart a uni-axial strain in a MOS channel region. Removed portions of a channel layer may be filled with a junction material having a lattice spacing different than that of the channel material to causes a uni-axial strain in the channel, in addition to a bi-axial strain caused in the channel layer by a top barrier layer and a bottom buffer layer of the quantum well.
摘要:
A trigate device having an extended metal gate electrode comprises a semiconductor body having a top surface and opposing sidewalls formed on a substrate, an isolation layer formed on the substrate and around the semiconductor body, wherein a portion of the semiconductor body remains exposed above the isolation layer, and a gate stack formed on the top surface and opposing sidewalls of the semiconductor body, wherein the gate stack extends a depth into the isolation layer, thereby causing a bottom surface of the gate stack to be below a top surface of the isolation layer.
摘要:
Embodiments described include straining transistor quantum well (QW) channel regions with metal source/drains, and conformal regrowth source/drains to impart a uni-axial strain in a MOS channel region. Removed portions of a channel layer may be filled with a junction material having a lattice spacing different than that of the channel material to causes a uni-axial strain in the channel, in addition to a bi-axial strain caused in the channel layer by a top barrier layer and a bottom buffer layer of the quantum well.