Abstract:
A radio frequency system. In some embodiments, the system includes a one-bit receiver, and the one-bit receiver includes a digital pseudo random noise generator, a one-bit digital to analog converter, a power combiner, a one-bit analog to digital converter, and a digital subtraction circuit. The digital pseudo random noise generator produces a signal added to the received signal before analog to digital conversion. After analog to digital conversion, a delayed version of the dither is subtracted from the digital signal.
Abstract:
A radio frequency system. In some embodiments, the system includes a one-bit receiver, and the one-bit receiver includes a digital pseudo random noise generator, a one-bit digital to analog converter, a power combiner, a one-bit analog to digital converter, and a digital subtraction circuit. The digital pseudo random noise generator produces a signal added to the received signal before analog to digital conversion. After analog to digital conversion, a delayed version of the dither is subtracted from the digital signal.
Abstract:
Circuit and method for modulating filter coefficients of a frequency channelizer having a filter bank include: receiving a wide spectrum input signal; modulating the filter coefficients of the filter bank to sweep a center frequency of each channel of the frequency channelizer, using a modulation scheme; and inputting frequency offset compensation caused by the modulation, and output signals of the frequency channelizer to an application processing circuit to convert the output signals to their original center frequencies.
Abstract:
A digital receiver includes a digital synthesizer that generates a local oscillating (LO) signal at a selected frequency, and a signal mixer that receives an input signal and generates a mixed output signal in response to shifting a phase of the input signal based on the frequency of the LO signal. A multi-mode dynamic channelizer is selectively operable in a first mode and a second mode. The first mode generates a plurality of individual channels having a channel size defined by a bandwidth and a gain, and the second mode generates a parallelization of a selected channel. In response to operating in the second mode, the multi-mode dynamic channelizer adjusts at least one of the bandwidth and the gain of the selected channel based on the mixed output signal to change the channel size of the selected channel.
Abstract:
An electronic warfare (EW) devices and a method of providing jamming techniques are generally described. Firmware is updated by eliminating an existing jamming technique, adding a new technique and/or changing parameters of one of the techniques in the firmware. Changing the technique parameters includes adding a new parameter, deleting an existing parameter, changing the range of values for an existing parameter and changing the order of the parameters to be transmitted by an Operational Flight Program (OFP) to the firmware to generate the technique. The OFP reads a published a register mapping specifying parameters to use in generating the jamming techniques in the EW firmware, a range of the parameters and an order of the parameters. The jamming techniques are generated using parameters transmitted by the OFP to the firmware. The same OFP is used to trigger generation of jamming techniques prior to and after the updating of the firmware.
Abstract:
Embodiments are directed to a channelizer architecture configured to provide fully configurable frequency spectrum shaping by: establishing a plurality of parameters of the architecture, receiving an input signal, processing, by the architecture, the input signal in accordance with the plurality of parameters to obtain an output signal, analyzing the output signal to detect an object, and modifying the plurality of parameters to account for at least one dynamic condition associated with the object.
Abstract:
Embodiments of a system and method for providing efficient wideband inverse channelization for direct digital synthesizer based jamming techniques are generally described herein. In some embodiments, metadata associated with a technique for generating a waveform, such as frequency, phase and amplitude parameters, is received. Data select signals and data input are generated based on the received metadata. In-phase and quadrature signals are produced at an output of a first de-multiplexer and a second de-multiplexer, respectively, based on the data select signals and the data input. Frequency modulated signals generated by direct digital synthesizers may be combined in a channel using a separate, distinct channel combiner.