摘要:
Techniques for managing interference in a wireless network are described. A base station may receive enhanced pilot measurement reports from user equipments (UEs) and may make an interference management decision based on the received reports. The base station may select a serving base station for a UE based on an enhanced pilot measurement report received from the UE. The base station may determine resources with a low target interference level at a neighbor base station and may avoid scheduling a UE for uplink transmission on the resources. The base station may also determine whether to reserve resources for a neighbor base station based on data performance of the neighbor base station, whether the neighbor base station observes high interference from UEs served by the base station, or whether UEs served by the neighbor base station observe high interference from the base station, which may be determined based on the enhanced pilot measurement reports.
摘要:
Techniques for selecting a serving base station for a terminal in a wireless communication network are described. In one design, multiple candidate base stations for the terminal may be identified, with each candidate base station being a candidate for selection as the serving base station for the terminal. The multiple candidate base stations may include base stations with different transmit power levels and/or may support interference mitigation. One of the multiple candidate base stations may be selected as the serving base station. In one design, the serving base station may be selected based on at least one metric for each candidate base station. The at least one metrics may be for pathloss, effective transmit power, effective geometry, projected data rate, control channel reliability, network utility, etc. The selected candidate base station may have a lower SINR than a highest SINR among the multiple candidate base stations.
摘要:
Techniques for selecting a serving base station for a terminal in a wireless communication network are described. In one design, multiple candidate base stations for the terminal may be identified, with each candidate base station being a candidate for selection as the serving base station for the terminal. The multiple candidate base stations may include base stations with different transmit power levels and/or may support interference mitigation. One of the multiple candidate base stations may be selected as the serving base station. In one design, the serving base station may be selected based on at least one metric for each candidate base station. The at least one metrics may be for pathloss, effective transmit power, effective geometry, projected data rate, control channel reliability, network utility, etc. The selected candidate base station may have a lower SINR than a highest SINR among the multiple candidate base stations.
摘要:
Systems and methodologies are described that facilitate multiplexing control data values over a single physical control channel at least in part by dividing the control channel into one or more logical channels. The physical control channel can have a corresponding Walsh space for transmitting a number of bits, or representations thereof, and the Walsh space can be divided among the logical control channels. Additionally, the logical control channels and/or physical channel can be scrambled according to an identifier of a mobile device (such as MAC ID) to differentiate the data on the channel. Furthermore, a sector identifier can be used to scramble the data where the sector is ascertainable.
摘要:
Techniques for centralized control of relay operation are described. In an aspect, a designated network entity (e.g., a base station or a network controller) may control the operation of relay stations within its coverage area. The network entity may select certain user equipments (UEs) to be relay UEs that can serve as relay stations for other UEs, e.g., based on pathloss between the UEs and a base station, the locations of the UEs, battery power levels of the UEs, fairness considerations, etc. The network entity may also select a specific relay UE to serve as a relay station for a client UE desiring to communicate with a base station, e.g., based on pilot measurements from relay UEs for the client UE. The network entity may also control transmission of discovery pilots by relay UEs and/or client UEs for relay detection.
摘要:
Methods, apparatuses, and computer program products are disclosed for encoding/decoding a wireless control signal. For encoding, control bits are received and encoded with a first error control code so as to create a first set of encoded bits. The encoded bits are then encoded with a second error control code so as to create a second set of encoded bits, which are modulated as beacon tones and subsequently transmitted. For decoding, beacon tones corresponding to a set of control bits are received and subsequently demodulated so as to ascertain a set of demodulated bits. The demodulated bits are then decoded with a decoder so as to ascertain a set of decoded bits. The decoded bits are then decoded with a second decoder so as to ascertain a second set of decoded bits, which includes the set of control bits.
摘要:
Techniques for mitigating interference on control channels in a wireless communication network are described. In an aspect, high interference on radio resources used for a control channel may be mitigated by sending a request to reduce interference to one or more interfering stations. Each interfering station may reduce its transmit power on the radio resources, which may then allow the control channel to observe less interference. In one design, a user equipment (UE) may detect high interference on radio resources used for a control channel by a desired base station. The UE may send a request to reduce interference on the radio resources to an interfering base station, which may reduce its transmit power on the radio resources. The UE may receive the control channel on the radio resources from the desired base station and may observe less interference from the interfering base station.
摘要:
Techniques for combating high interference in a dominant interference scenario are described. A terminal may observe high interference from an interfering base station in a dominant interference scenario. In an aspect, high interference may be combated by reserving time intervals for a serving base station. The terminal may communicate with the serving base station in the reserved time intervals and may avoid high interference that may desens a receiver at the terminal. In one design, the terminal may measure received power of base stations and may report its interference condition. The serving base station may receive a report from the terminal, determine that the terminal is observing high interference, and send a reservation request to the interfering base station to reserve time intervals. The interfering base station may grant the request and return a response. The serving base station may thereafter communicate with the terminal in the reserved time intervals.
摘要:
Aspects are disclosed for sequencing and correlating a positioning reference signal. A set of reference symbols associated with a reference signal are allocated, and a base sequence is generated. An extended sequence, which includes the set of reference symbols, is then provided according to the base sequence. The extended sequence is then transmitted in a sub-frame designated as an idle period. A sequence of reference symbols is received from a base station during an idle period of the base station. A replicated sequence of reference symbols is generated, and a correlation is ascertained between a subset of the received sequence of reference symbols and a corresponding subset of the replicated sequence of reference symbols. The received sequence of reference symbols is then identified according to the correlation.
摘要:
Techniques for supporting communication in an asynchronous TDD wireless network are described. In an aspect, downlink transmissions and uplink transmissions may be sent on different carriers in an asynchronous TDD wireless network to mitigate interference. In one design, a station (e.g., a base station or a UE) may send a first transmission on a first carrier in a first time period and may receive a second transmission on a second carrier in a second time period. The station may only transmit, or only receive, or neither in each time period. In one design, allocation of carriers for the downlink and uplink may be performed when strong interference is detected, e.g., by a base station or a UE. When strong interference is not detected, the first and second carriers may each be used for both the downlink and uplink.