摘要:
A method for an SS to perform network entry in a multi-carrier wireless environment that has a primary carrier and at least one secondary carrier associated with a BS, the method comprising: a. sensing a carrier in an area serviced by the BS; b. determining if the carrier is a primary carrier or a secondary carrier; and c. performing the network entry if the determining establishes that the sensed carrier is a primary carrier and not a secondary carrier.
摘要:
There is provided a method of encoding and decoding data using an error control code having a codebook G. The codebook G is a sub-codebook of a codebook P. Each codeword g in the sub-codebook G has an autocorrelation amplitude that is different from and higher than each correlation amplitude between g and each of the other codewords in the sub-codebook G. In one specific embodiment in which the codebook P is that of a Reed-Muller code, using G instead of P reduces the likelihood of the presence of more than one maximum correlation amplitude when computing the non-coherent decision metric during decoding.
摘要:
The present disclosure generally relates to an uplink control signal design for wireless system. One example method includes establishing communication with a mobile station in a multi-carrier wireless communication system using a primary carrier, providing a first control signaling via the primary carrier, the first control signaling assigning at least one secondary carrier, and receiving a channel quality indication of the secondary carrier via the primary carrier using a control channel.
摘要:
There is provided a method of encoding and decoding data using an error control code having a codebook G. The codebook G is a sub-codebook of a codebook P. Each codeword g in the sub-codebook G has an autocorrelation amplitude that is different from and higher than each correlation amplitude between g and each of the other codewords in the sub-codebook G. In one specific embodiment in which the codebook P is that of a Reed-Muller code, using G instead of P reduces the likelihood of the presence of more than one maximum correlation amplitude when computing the non-coherent decision metric during decoding.
摘要:
The present disclosure generally relates to an uplink control signal design for wireless system. One example method includes establishing communication with a mobile station in a multi-carrier wireless communication system using a primary carrier, providing a first control signaling via the primary carrier, the first control signaling assigning at least one secondary carrier, and receiving a channel quality indication of the secondary carrier via the primary carrier using a control channel.
摘要:
A method for a subscriber station to perform network entry in a multi-carrier wireless environment that has a primary carrier and at least one secondary carrier associated with a base station. The method includes sensing a carrier in an area serviced by the base station and determining if the carrier is a primary carrier or a secondary carrier. The method further includes performing the network entry if the determining establishes that the sensed carrier is a primary carrier and not a secondary carrier.
摘要:
A method and apparatus are provided for a wireless communication system including a base station and at least one user equipment. A Channel Quality Indicator (CQI) table can be generated so that only an index corresponding to the measured CQI needs to be fed back to the base station. The CQI tables proposed herein may be suitable to different channel statistics, different Multiple Input Multiple Output (MIMO) mode and may be optimized based on either performance or implementation complexity. Multiple CQI tables may be formed into one compound CQI table. The CQI tables may be stored at both a base station and user equipment. The base station can select a CQI table from the set of tables. The base station signals the selection of the CQI table to the user equipment and the user equipment feeds back indices from the selected CQI table to the base station.
摘要:
A method of operation of a MIMO transmitter, in a cellular network supporting both legacy standard-compliant mobile terminals and next generation standard-compliant mobile terminals, the method comprising defining a matrix of resource blocks within an information channel of the cellular network, wherein each resource block corresponds to a region of subcarriers of a transmission timeslot at a given frequency subband; assigning a first set of reference signals (RSs) for the legacy standard-compliant mobile terminals to resource blocks at specific locations within the matrix to be transmitted by the MIMO transmitter, the specific locations being defined by, the legacy standard; and assigning a second set of RSs for the next-generation standard-compliant mobile terminals to other resource blocks within the matrix to be transmitted by the MIMO transmitter.
摘要:
A method and apparatus are provided for measuring channel quality over which has been transmitted a sequence of symbols produced by encoding and constellation mapping a source data element sequence. The method includes receiving a sequence of received symbols over the channel whose quality is to be measured. The sequence of received symbols is de-mapped based on a first channel quality indicator previously transmitted to a transmitter of the sequence of symbols. The method also includes decoding the de-mapped symbols to produce a decoded output sequence. In some embodiments, the decoding may be based on the first channel quality indicator. The method also includes re-encoding the decoded output sequence to produce a re-encoded output sequence. The method also includes correlating the de-mapped symbols with the re-encoded output sequence to produce a second channel quality indicator. The second channel quality indicator is transmitted to the transmitter to adaptively select a type of mapping based on the second channel quality indicator. In some embodiments, the transmitter may adaptively select a type of encoding based on the second channel quality indicator.
摘要:
The present invention provides an effective way to create a virtual MIMO transmission system using mobile terminals that have only one transmit path and antenna. This is accomplished by assigning mobile terminals to a group and assigning certain shared resources and user-specific resources to those mobile terminals in the group. In a synchronized fashion, the mobile terminals will provide uplink transmission in concert, as if they were a single entity having multiple transmission paths and antennas. Preferably, the shared resources bear on how the data is transmitted, and the user-specific resources relate to pilot signals. The data transmitted may be encoded in any number of ways, and in one embodiment, the mobile terminals may relay their information to each other, such that uplink transmissions can incorporate STTD decoding or other space-time codes. The invention is applicable to virtually any multiple access technology, including OFDM, TDMA, and CDMA, preferably synchronous CDMA.