摘要:
Aqueous polymer dispersions based on polychloroprene, a process for their preparation and their use in adhesive formulations. The aqueous polymer dispersion is obtained by a) preparing an aqueous polychloroprene dispersion with a gel content of 0.1 wt. %-30 wt. %, based on the polymer, prepared by polymerization at 0° C.-70° C. of chloroprene and, optionally, ethylenically unsaturated monomers which can be copolymerized with chloroprene and b) subsequently storing the dispersion at temperatures of from 50° C.-110° C. until the gel content has risen by at least 10 wt. % to 1-60 wt. %, based on the polymer.
摘要:
An aqueous polymer dispersion that includes a) a polyurethane dispersion having an average particle size of 60 to 350 nm and b) an aqueous silicon dioxide dispersion having a particle diameter of the SiO2 particles of 20 to 400 nm. The dispersion is prepared by mixing the polyurethane dispersion (a) with the silicon dioxide dispersion (b). The aqueous polymer dispersion can be used in adhesive compositions, which can be used to bond substrates together, especially substrates that are structural components of shoes.
摘要:
Compositions comprising new halogenated butyl rubbers with a defined, low content of halogen, a defined content of non-halogenated double bonds and a defined content of anti-agglomeration/vulcanisation control agents and containing polymer compounds comprising special amidines, mercapto or zinc mercapto compounds and polymers possess outstanding mechanical and physiological properties, so that they are suitable for the production of tyres, particularly tyre inner liners, tyre sidewalls and tyre treads.
摘要:
The metal oxide vulcanization of polychloroprene in the presence of amidine compounds, but in the absence of magnesium oxide, leads to vulcanizates which are capable of withstanding high temperatures, even under dynamic stress.
摘要:
Mixtures of polychloroprene and hydrogenated nitrile rubber give vulcanizates combining high modulus with a high dynamic stress absorption capacity.
摘要:
The production of polymers containing terminal halogen groups from cationically polymerizable monomers using a metal halide boiling below 50.degree. C. at normal pressure as catalyst and an organic halide corresponding to the following general formula ##STR1## in which X is halogen,n is an integer of 1, 2, 3 or 4,R.sub.1 and R.sub.2 represent C.sub.5 -C.sub.10 cycloalkyl or linear or branched C.sub.1 -C.sub.20 alkyl andR.sub.3 represents C.sub.5 -C.sub.10 cycloalkyl, linear or branched C.sub.1 -C.sub.20 alkyl, C.sub.5 -C.sub.10 cycloalkylene, linear or branched C.sub.1 -C.sub.20 alkylene or aryl, and the organic halide (inifer) contains from 5 to 50 carbon atoms and is present in concentrations of from 10.sup.-1 to 10.sup.-6 moles per mole monomer while the metal halide is added in a 1.1 to 100-fold molar excess, based on halogen atoms of the organic halide, at temperatures of from +10.degree. to -130.degree. C. in an inert organic solvent or solvent mixture is possible with recovery of the catalyst and with formation of a product having a functionality differing only slightly, if at all, from the theoretical functionality providing the reaction components monomer, catalyst and inifer are continuously introduced into a polymerization apparatus in such a way that all three components are only mixed once they are inside the apparatus, the polymer solution is continuously removed from the apparatus, the polymer solution is freed from residual monomer, unreacted inifer and from the catalyst and worked up.