Abstract:
There is provided a conductive paste composition for an internal electrode of a multilayered ceramic electronic component including: a metal powder; and a chrome (Cr) or cobalt (Co) powder having a melting point higher than that of the metal powder. In the conductive paste composition for the internal electrode, the sintering shrinkage temperature of the internal electrode may be increased, and the connectivity of the internal electrode may be improved.
Abstract:
There are provided a multilayer ceramic electronic component and a method of manufacturing the same, the multilayer ceramic electronic component, including: a ceramic body including a plurality of dielectric layers laminated therein, each dielectric layer having an average thickness of 0.65 μM or less; internal electrodes disposed to face each other while having each dielectric layer interposed therebetween in the ceramic body; and external electrodes electrically connected to the internal electrodes, wherein, when td denotes the average thickness of each of the dielectric layers and te denotes an average thickness of each of the internal electrodes, te/td≦0.77 is satisfied.
Abstract:
There are provided a ceramic electronic component and a method of manufacturing the same. The ceramic electronic component includes: a ceramic element; and an internal electrode layer formed within the ceramic element, having a thickness of 0.5 μm or less, and including a non-electrode region formed therein, wherein an area ratio of the non-electrode region to an electrode region of the internal electrode layer, in a cross section of the internal electrode layer is between 0.1% and 10%, and the non-electrode region includes a ceramic component.
Abstract:
Disclosed are a conductive paste for an inner electrode and a multilayer ceramic electronic component having the same. There is provided a conductive paste for an inner electrode, including: a conductive metal powder for manufacturing the inner electrode for multilayer ceramic electronic component; an organic binder including at least one selected from a group consisting of acryl-based resin, butyral-based resin, and a cellulose-based resin to disperse the conductive metal powder; and a solvent including eucalyptol.
Abstract:
The present invention relates to a multilayer electronic component having a structure in which a dielectric layer and an internal electrode layer are alternately laminated, which includes the dielectric layer and the internal electrode layer including metal powder and an inhibitor, wherein the inhibitor includes 0.5 to 20 mol % of a Ca component based on 100 mol % of a barium titanate (BT) base material, and a method for manufacturing the same.According to the present invention, it is possible to provide a multilayer electronic component that can implement excellent electrical characteristics and electrode connectivity by adding a Ca component to an internal electrode layer as a sub-component of the inhibitor to minimize the occurrence of oxygen vacancies on the interface formed when the inhibitor component included in the internal electrode layer moves to the dielectric layer.