Abstract:
A system for configuring a UE-AMBR includes a MME to send the UE-AMBR to an eNB covering the serving cell of the UE, the eNB covering the serving cell of the UE establishes a radio access bearer of the UE on at least one secondary cell. The MME sends an AMBR of the UE in the primary eNB covering the serving cell of the UE and an AMBR of the UE in a secondary eNB to the primary eNB. The primary eNB sends the AMBR of the secondary eNB to the corresponding secondary eNB. The technical solutions of the present disclosure can make total rate of all non-GBR services of the UE be not larger than the UE-AMBR when the UE has multiple S1 bearers or one S1 bearer.
Abstract:
Disclosed is a method for access of a user equipment (UE) in a communication system, which includes the UE, a base station, and a network node. The base station carries out radio link control (RLC) layer and media access control (MAC) layer functions. The network node carries out packet data convergence protocol (PDCP) layer, radio resource control (RRC) layer, and non-access (NAS) layer functions. The method includes the network node receiving a non-access stratum identifier of the UE or a random number generated by the UE sent from the UE through a RRC message, and the network node sending the received non-access stratum identifier or the random number to the base station, for the base station to set a UE collision dismiss identifier.
Abstract:
A method for data forwarding in a small cell system comprises: sending by a master base station (MeNB) to a target secondary base station (SeNB) information of a source SeNB or a source SeNB cell where a user equipment (UE) is located; determining by the target SeNB whether a direct data forwarding is feasible; notifying, by the target SeNB, the MeNB whether the direct data forwarding is feasible; and determining by the MeNB whether it is a direct data forwarding or an indirect data forwarding. The method for data forwarding provided in the present application may support both the direct data forwarding and the indirect data forwarding based on actual situation of the network, reduce data loss and failure of data forwarding, and improve the efficiency of data forwarding.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services.There is provided a method and apparatus for data transport control between wireless network systems, the method comprises: determining, by a first node, whether a predetermined condition is satisfied; and transmitting, by the first node, at least one of data transport command information and user equipment access information when the predetermined condition is satisfied.
Abstract:
In accordance with an aspect of the present disclosure, a method for supporting movement of a user equipment (UE) by a central unit (CU) in wireless communications is provided. The method comprises transmitting beam measurement configuration information to the UE; and receiving information of a candidate beam transmitted by a distributed unit (DU); wherein the information of the candidate beam is obtained by the DU based on a beam measurement result, and wherein the beam measurement result is obtained by the UE through measuring one or more beam signals based on the beam measurement configuration information.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). According to an embodiment of the present disclosure, a circuit switched fallback (CSFB) method is provided. The method comprising: receiving, by a first base station, a user equipment (UE) context modification request message from a mobility management entity (MME), wherein the UE context modification request message includes a CSFB indicator; receiving, by the first base station, a radio link failure (RLF) indication message from a second base station; and determining, by the first base station, whether to trigger a handover procedure.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present invention provides a method for controlling Wireless Local Area Network (WLAN) aggregation and an associated equipment. The method comprises the following steps of: acquiring, by a first radio access network node, WLAN information about a User Equipment (UE); and, controlling, by the first radio access network node, WLAN aggregation for the UE according to the acquired WLAN information. A second radio access network node decides whether to maintain a WT and/or whether to establish WLAN aggregation for the UE when the UE moves to a first radio access network; and, the second radio access network node transmits information about whether to maintain the WT and/or indication information about whether to establish the WLAN aggregation for the UE. The WT receives UE context reference information transmitted by the first radio access network node; and, the WT indexes a UE context according to the received UE context reference information. With the present invention, the WLAN aggregation performance in a UE mobility scenario can be improved.
Abstract:
The present invention provides a network selection method, comprising: acquiring, by a first base station, core network type information of a core network node from UE, a second base station or a first core network node; and selecting, by the first station, a core network node for the UE according to the acquired core network type information and information about a second core network node provided by the UE. The present further provides a base station device. The application of the present application may reduce the re-routing between core network nodes, shorten the access delay of UE, and satisfy the communication demand of UE types or service types that have requirements on delay.
Abstract:
A method for supporting packet data network (PDN) gateway (GW) selection, comprising the following steps of: receiving by a mobility management entity (MME) a local route optimization service request information; searching by the MME the internet protocol (IP) address of a PDN GW which supports local route optimization according to the IP address of a PDN GW on home evolved node B (HeNB) (PDN GWh); sending by the MME a bearer request establishment message to the PDN GWh. The method of the present invention can ensure core network equipment to find PDN GW correctly while HeNB system supports local route optimization.
Abstract:
A method for controlling, charging and positioning a UE is disclosed, which includes: a master base station sending closed subscriber group (CSG) member status of the UE in a secondary cell to a secondary base station; the master base station sending a CSG identity of the secondary cell and a PLMN identity selected for the UE that serves the UE in a cell of the secondary base station to a mobility management entity (MME); the MME validating CSG member status of the UE in the secondary cell; and the MME sending the validated CSG member status to the master base station with the present application, the UE is able to properly access to the secondary cell, and access control and member validation, charging, and positioning may be performed for the UE reasonably, which improves the user experience.