Abstract:
A wearable mobile device and a method of detecting a biosignal with a wearable mobile device are provided. A method of detecting a biosignal with a wearable mobile device involves determining whether a wearable mobile device is closely attached to a user; and providing a biosignal-based service in response to the wearable mobile device being determined to be closely attached to the user.
Abstract:
A device and a method for an energy sharing network may include an energy store configured to store energy; an energy transmitter-receiver configured to transmit energy and energy related information to at least one neighbor device and to receive energy and energy related information from at least one neighbor device; and a controller configured to control the energy transmitter-receiver based on a predetermined condition.
Abstract:
A method and apparatus provide for stable signal demodulation in a communication system. The method and apparatus includes including detecting an erroneous demodulation value based on backward-demodulation of received signals, using a difference between a received signal to be demodulated and a preceding signal of the received signals and correcting the error demodulation value. Alternatively, backward-demodulation is used to confirm received signals.
Abstract:
An apparatus for estimating biological information may include a sensor configured to detect a first light signal and a second light signal from an object of a user and a processor configured to determine whether a condition for estimating biological information is satisfied based on the detected first light signal and estimate biological information based on the second light signal, wherein the sensor includes a force sensor configured to measure a force applied to the object when the object is in contact with a cover surface of the sensor.
Abstract:
An apparatus for and a method for estimating blood pressure are provided. The apparatus for estimating blood pressure includes: a sensor configured to measure a pulse wave signal from an object; and a processor configured to obtain a mean arterial pressure (MAP) based on the pulse wave signal, configured to classify a phase of the obtained MAP according to at least one classification criterion, and to obtain a systolic blood pressure (SBP) by using an estimation model corresponding to the classified phase of the MAP among estimation models corresponding to respective phases of the MAP.
Abstract:
An apparatus for estimating oxygen saturation is provided. The apparatus may include a sensor configured to measure optical signals of multiple wavelengths based on emitting multi-wavelength light onto an object; and a processor configured to: determine a section of the optical signals for estimating the oxygen saturation based on a difference between at least two optical signals among the optical signals of the multiple wavelengths; and estimate the oxygen saturation based on the optical signals of the multiple wavelengths in the section.
Abstract:
An apparatus for estimating bio-information, the apparatus including a pulse wave sensor and a processor. The pulse wave sensor includes a plurality of channels, each channel of the plurality of channels being configured to measure a first pulse wave signal of a first wavelength and a second pulse wave signal of a second wavelength that is different from the first wavelength. The processor is configured to: for each channel of the plurality of channels, generate a first oscillogram based on the first pulse wave signal, generate a second oscillogram based on the second pulse wave signal, and convert a phase delay between the first oscillogram and the second oscillogram into an area. The processor is further configured to determine a channel among the plurality of channels based on the area of each channel, and estimate bio-information based on the determined channel.
Abstract:
A signal processing apparatus includes a memory configured to store instructions; and a processor configured to execute the instructions to obtain a signal; obtain a frequency band spectrum by applying a Fast Fourier Transform (FFT) to the obtained signal; and remove noise from the obtained spectrum by applying a first filter and a second filter, which are different from each other, to the obtained frequency band spectrum.
Abstract:
An apparatus for estimating bio-information, the apparatus including a pulse wave sensor and a processor. The pulse wave sensor includes a plurality of channels, each channel of the plurality of channels being configured to measure a first pulse wave signal of a first wavelength and a second pulse wave signal of a second wavelength that is different from the first wavelength. The processor is configured to: for each channel of the plurality of channels, generate a first oscillogram based on the first pulse wave signal, generate a second oscillogram based on the second pulse wave signal, and convert a phase delay between the first oscillogram and the second oscillogram into an area. The processor is further configured to determine a channel among the plurality of channels based on the area of each channel, and estimate bio-information based on the determined channel.
Abstract:
A device, a method, and a system recognize a motion using a gripped object. The motion recognition device may estimate a state of a wrist of a user according to a writing action using the gripped object and may estimate a joint motion of a body part related to the wrist according to the writing action. The device may then estimate a state of the gripped object according to the state of the wrist and the joint motion. Additionally, the motion recognition device may control an external device by using a control signal generated by continuously tracking the state of the object.