Abstract:
Disclosed herein is a method and apparatus for personal multimedia-program recording incorporating a plurality of power-saving states/modes. Disclosed herein is an electronic device adapted to prompt an end-user to provide instructions by selecting options for requesting a particular multimedia-program, recording the multimedia-program, storing the multimedia-program, and initiating playback of the multimedia-program. The electronic devices may be adapted to determine whether an end-user is physically present when the electronic device is in operation.
Abstract:
Presented herein are systems and methods for global positioning system based secure access. A request for access to a computer network is received. A determination is made whether a mobile terminal is within a predetermined location. If the mobile terminal is within the predetermined location, access is granted. If the mobile terminal is outside of the predetermined location, access to the computer network is denied.
Abstract:
A method of filtering data packets in a network device is disclosed. An incoming packet is received from a port and the incoming packet is inspected and packet fields are extracted. The incoming packet is classified based on the extracted packet fields and action instructions are generated. The incoming packet is then modified based on the action instructions. Further, the inspection and extraction includes applying inspection mask windows to any portion of the incoming packet to extract programmable packet fields.
Abstract:
Presented herein are systems and methods for integrating secure identification logic into cell phones. A registration is received, wherein said registration includes an identifier identifying a mobile terminal. Information is transmitted to the mobile terminal, wherein a password is a function of the information.
Abstract:
Presented herein are systems and methods for integrating secure identification logic into cell phones. A registration is received, wherein said registration includes an identifier identifying a mobile terminal. Information is transmitted to the mobile terminal, wherein a password is a function of the information.
Abstract:
A network device for handling data and a method for handling data in a network device includes at least one media port and at least one high speed docking station, communicating with the at least one media port. At least one master is provided in the network device, where the at least one master is connected to the at least one high speed docking station. The master is configured to handle and process data received by the at least one media port and passed to the master through the at least one high speed docking station. The network device is configured to handle media ports of different media types. Thus, the device can handle data received through different media ports that have different media types with the same master, making the network device easily configured to meet a customer's needs.
Abstract:
A method for establishing a virtual channel between network devices is disclosed. In the case of a local network device establishing a virtual channel with a remote network device, a virtual channel request message is sent from the local network device to the remote network device. A virtual channel acknowledgement message and a remote capability list are received and a virtual channel resume message and a local capability list are sent. The virtual channel is then enabled. In the case of a remote network device establishing a virtual channel with a local network device, a virtual channel request message is received from a local network device by a remote network device. A virtual channel acknowledgement message and a remote capability list are sent and a virtual channel resume message and a local capability list are received. The virtual channel is then enabled.
Abstract:
A video layer effects processing system which receives normal video and special effects information on separate layers has been presented. The system selectively mixes various video layers to transmit a composite video signal for a video display such as a television, or a virtual reality system. Special effects include spotlights, zooming, etc. Additional special effects such as shaping of objects and ghost effects are created by masking and superimposing selected video layers. The selective mixing, for example, to enable or disable, strengthen or weaken, or otherwise arrange special effects, can be directed from a remote source or locally by a user through real-time control or prior setup. The video layer effects processing system can also be incorporated into a set-top-box or a local consumer box.
Abstract:
A video processing system includes at least one video source, a region selecting unit, a subtracting unit and a display unit. The region-selecting unit selects the user-defined region of interest from the video source. The subtracting unit subtracts the required region, selected by the region selecting unit. The output of the subtracting unit is provided to the display unit, which displays the required output. In one embodiment, when video data is received from a plurality of video sources, the selecting of user defined regions of interest from the video sources is supported. The region subtracting unit can be used to subtract the required region of interest from video data and it is displayed on the display unit. In other embodiments of invention, the display unit displays on overlay of two unrelated video streams.
Abstract:
A network device for handling data and a method for handling data in a network device are disclosed. The network device includes at least one media port and at least one high speed docking station, communicating with the at least one media port. At least one master is provided in the network device, where the at least one master is connected to the at least one high speed docking station. The master is configured to handle and process data received by the at least one media port and passed to the master through the at least one high speed docking station. The network device is configured to handle media ports of different media types. Thus, the device can handle data received through different media ports that have different media types with the same master, making the network device easily configured to meet a customer's needs.