Abstract:
An apparatus is provided that includes a waveguide adjacent an air bearing surface, a near-field transducer comprising a peg having a side orthogonal to the air bearing surface and a write pole adjacent to the waveguide. The write pole includes a first portion extending towards the air bearing surface at a non-orthogonal angle with respect to the air bearing surface, and a second portion in contact with the first portion comprising a side that extends towards and orthogonally contacts the air bearing surface. The second portion or the write pole defines a gap between the side of the peg orthogonal to the air bearing surface and the side of the second portion of the write pole that extends towards and orthogonally contacts the air bearing surface. A method of making a magnetic recording head that includes the provided apparatus is also disclosed.
Abstract:
An apparatus includes a waveguide core having an elongated edge parallel to a substrate plane of the apparatus. An output end of the waveguide core faces a media-facing surface of the apparatus. A plate-like portion of a plasmonic material has a major surface facing the elongated edge of the waveguide core, and the major surface has a narrowed output end facing the media-facing surface. An elongated ridge of the plasmonic material is disposed on at least part of the plate-like portion between an input end and the narrowed output end.
Abstract:
A near-field transducer has an enlarged portion with a layer of soft plasmonic material. A peg is embedded in a lower part of the enlarged portion that faces a media-facing surface. The peg has an elongated outer part that extends from a lower edge of the enlarged portion towards the media-facing surface and an embedded part that is embedded within the enlarged portion. The embedded part could be any shape. The peg is formed of a thermally robust plasmonic material.
Abstract:
Devices that include a near field transducer (NFT), the NFT having a disc and a peg, and the peg having five surfaces thereof; and at least one adhesion layer positioned on at least one of the five surfaces of the peg, the adhesion layer including one or more of the following: yttrium (Y), tin (Sn), iron (Fe), copper (Cu), carbon (C), holmium (Ho), gallium (Ga), silver (Ag), ytterbium (Yb), chromium (Cr), tantalum (Ta), iridium (Ir), zirconium (Zr), yttrium (Y), scandium (Sc), cobalt (Co), silicon (Si), nickel (Ni), molybdenum (Mo), niobium (Nb), palladium (Pd), titanium (Ti), rhenium (Re), osmium (Os), platinum (Pt), aluminum (Al), ruthenium (Ru), rhodium (Rh), vanadium (V), germanium (Ge), tin (Sn), magnesium (Mg), iron (Fe), copper (Cu), tungsten (W), hafnium (Hf), carbon (C), boron (B), holmium (Ho), antimony (Sb), gallium (Ga), manganese (Mn), silver (Ag), indium (In), bismuth (Bi), zinc (Zn), ytterbium (Yb), and combinations thereof.
Abstract:
Devices having an air bearing surfaces (ABS), the devices including a near field transducer (NFT) that includes a disc having a front edge; a peg, the peg having a front surface at the air bearing surface of the apparatus, an opposing back surface, a top surface that extends from the front surface to the back surface, two side surfaces that expend from the front surface to the back surface and a bottom surface that extends from the front surface to the back surface; and a barrier layer, the barrier layer separating at least the back surface of the peg from the disc and the barrier layer having a thickness from 10 nm to 50 nm.
Abstract:
The disclosed methods enable the production of plasmonic near-field transducers that are useful in heat-assisted magnetic recording. The plasmonic near-field transducers have an enlarged region and a peg region. The peg region includes a peg region in proximity to an air-bearing surface above a recording medium and also includes a flared region between and in contact with the enlarged region and the peg region. The flared region can act as a heat sink and can lower the thermal resistance of the peg portion of the near-field transducer, thus reducing its temperature.
Abstract:
A method of making a transducer head disclosed herein includes depositing a spacer layer on an NFT layer of the transducer head, forming an etch stop layer on a spacer layer of a transducer, depositing a cladding layer on the etch stop layer, and milling the cladding layer at a sloped angle such that the milling stops at the etch stop layer.
Abstract:
A polarization rotator for a recording head. The polarization rotator comprises a first waveguide coupled to an input coupler at a first end and a second waveguide. The first waveguide is offset from the second waveguide and a second end of the first waveguide is coupled to a second end of the second waveguide.
Abstract:
A near-field transducer includes an enlarged transducer portion of plasmonic material extending from an input end to an output end, a surface of the transducer portion including a trench running between two raised portions of the plasmonic material, the trench extending at least partially from the input end to the output end. A peg of the plasmonic material is disposed on the output end of the transducer portion and extends from the output end toward the air bearing surface of a heat assisted magnetic recording slider.
Abstract:
A device that includes a near field transducer (NFT); at least one cladding layer adjacent the NFT; and a discontinuous metal layer positioned between the NFT and the at least one cladding layer.