Abstract:
A novel functional panel that is highly convenient, useful, or reliable is provided. The functional panel includes a base material and a pair of pixels, and the base material covers the pair of pixels and has a light-transmitting property. The pair of pixels includes one pixel and another pixel, and the one pixel includes a light-emitting device and a first microlens. The light-emitting device emits light toward the base material, and the first microlens is interposed between the base material and the light emission and converges light. The first microlens includes a first surface and a second surface; the second surface is closer to the light-emitting device than the first surface is; and the second surface has a smaller radius of curvature than the first surface. The other pixel includes a photoelectric conversion device and a second microlens. The second microlens is interposed between the base material and the photoelectric conversion and converges external light incident from the base material side. The second microlens includes a third surface and a fourth surface; the third surface is closer to the photoelectric conversion device than the fourth surface is; and the fourth surface has a smaller radius of curvature than the third surface.
Abstract:
To provide a display device with excellent display quality, in a display device including a signal line, a scan line, a transistor, a pixel electrode, and a common electrode in a pixel, the common electrode is included in which an extending direction of a region overlapping with the signal line differs from an extending direction of a region overlapping with the pixel electrode in a planar shape and the extending directions intersect with each other between the signal line and the pixel electrode. Thus, a change in transmittance of the pixel can be suppressed; accordingly, flickers can be reduced.
Abstract:
To provide a display device with excellent display quality, in a display device including a signal line, a scan line, a transistor, a pixel electrode, and a common electrode in a pixel, the common electrode is included in which an extending direction of a region overlapping with the signal line differs from an extending direction of a region overlapping with the pixel electrode in a planar shape and the extending directions intersect with each other between the signal line and the pixel electrode. Thus, a change in transmittance of the pixel can be suppressed; accordingly, flickers can be reduced.
Abstract:
To provide a display device with a novel structure that can achieve both thickness reduction and favorable display quality. In a structure of a display device including a liquid crystal layer between a pixel electrode and a counter electrode, a common electrode and an electrode of a capacitor in a touch sensor on the counter electrode side are formed integrally and supplied with a pulse signal. On the element substrate side, a signal to be supplied to a capacitor line that forms a capacitance with the pixel electrode is in conjunction with the pulse signal so as to cancel a change in an electric field applied to the liquid crystal layer. Such a structure can achieve a display device with a touch sensor function that can cancel a change in an electric field applied to a liquid crystal layer even when the electric field is changed by a pulse signal.
Abstract:
[Object]Provided is a novel display device without deterioration of display quality or a novel display device in which flickering due to a reduced refresh rate is suppressed.[Solution]The display device includes a pixel for displaying a still image at a frame frequency of less than or equal to 1 Hz. The pixel includes a liquid crystal layer. The liquid crystal layer has a dielectric constant anisotropy of higher than or equal to 2 and lower than or equal to 3.8. Thus, flickering due to a reduced refresh rate can be suppressed, which leads to an improvement in display quality.
Abstract:
To provide a display device with excellent display quality, in a display device including a signal line, a scan line, a transistor, a pixel electrode, and a common electrode in a pixel, the common electrode is included in which an extending direction of a region overlapping with the signal line differs from an extending direction of a region overlapping with the pixel electrode in a planar shape and the extending directions intersect with each other between the signal line and the pixel electrode. Thus, a change in transmittance of the pixel can be suppressed; accordingly, flickers can be reduced.
Abstract:
The liquid crystal display device includes a first substrate, a second substrate, and a liquid crystal layer between the first substrate and the second substrate. The first substrate includes a transistor including an oxide semiconductor film including a channel formation region; a pixel electrode electrically connected to the transistor; an insulating layer in contact with the pixel electrode; and a first common electrode in contact with the insulating layer. The second substrate faces the first substrate and includes a second common electrode. A negative liquid crystal material is used for the liquid crystal layer. The specific resistivity of the liquid crystal material is greater than or equal to 1.0×1013 Ω·cm and less than or equal to 1.0×1016 Ω·cm.
Abstract:
A semiconductor device including an oxide semiconductor and an organic resin film is manufactured in the following manner. Heat treatment is performed on a first substrate provided with an organic resin film over a transistor including an oxide semiconductor in a reduced pressure atmosphere; handling of the first substrate is performed in an atmosphere containing moisture as little as possible in an inert gas (e.g., nitrogen) atmosphere with a dew point of lower than or equal to −60° C., preferably with a dew point of lower than or equal to −75° C. without exposing the first substrate after the heat treatment to the air; and then, the first substrate is bonded to a second substrate that serves as an opposite substrate.
Abstract:
A display device featuring a touch detection and a fingerprint imaging functions is provided. A display device includes a light-emitting element and a light-receiving element. The light-emitting element includes a first pixel electrode, a light-emitting layer, and a common electrode, and the light-receiving element includes a second pixel electrode, an active layer, and the common electrode. The first pixel electrode and the second pixel electrode are provided on the same plane. The common electrode overlaps with the first pixel electrode with the light-emitting layer therebetween, and overlaps with the second pixel electrode with the active layer therebetween. A first conductive layer, a second conductive layer, and an insulating layer are provided above the common electrode. The insulating layer is provided above the first conductive layer, and the second conductive layer is provided above the insulating layer. The light-receiving element has a function of receiving light emitted from the light-emitting element.
Abstract:
The resolution of a display apparatus having a light detection function is increased. The display apparatus includes a light-emitting device and a light-emitting and light-receiving device. The light-emitting device includes a first pixel electrode, a first light-emitting layer, and a common electrode; the light-emitting and light-receiving device includes a second pixel electrode, a second light-emitting layer, an active layer, and the common electrode; the active layer includes an organic compound; the first light-emitting layer is positioned between the first pixel electrode and the common electrode; the second light-emitting layer and the active layer are each positioned between the second pixel electrode and the common electrode; the light-emitting device has a function of emitting light of a first color; and the light-emitting and light-receiving device has a function of emitting light of a second color and a function of receiving light of the first color. The light-emitting and light-receiving device functions as both a light-emitting device and a light-receiving device, whereby a pixel can have a light-receiving function without an increase in the number of subpixels included in the pixel. Furthermore, the pixel can be provided with a light-receiving function without a reduction in the resolution of the display apparatus or a reduction in the aperture ratio of each subpixel.