Abstract:
A resealable can end is provided including a neck (10) and a cooperating cap member (12) which can be sealed onto and removed from the neck, and is capable of containing product under pressure or vacuum if desired. This end may be added, by convention seaming methods, such as roll seaming or by appropriate adhesive, to a container body, or may be formed integrally with container bodies. The venting feature of the end will achieve a controlled release of differential internal-to-ambient pressure upon initial opening of the cap, and may also provide resealed containment of partial contents retained in the container, although the contents will no longer be under pressure or vacuum, as the case may be. The end may be applied to, or incorporated in, containers made of various material, such as aluminum, coated steel, or selected plastics.
Abstract:
An anterior spinal implant includes a superior end face, an inferior end face and a sidewall extending between the superior end face and the inferior end face. The superior end face and the inferior end face are convex. In one application, the superior and inferior end faces are convex. The sidewall includes a convexly curved leading portion, a convexly curved trailing portion and a pair of substantially planar side portions. The superior and inferior end faces transition in a sagittal plane from a first radius of curvature to a second radius of curvature. The first radius of curvature is smaller than the second radius of curvature. The apexes of the superior and inferior end faces are offset from a center of the implant.
Abstract:
A computer system includes a chassis having a biased slider device mounted thereon. The slider device includes a plurality of connectors positioned in openings in the chassis. When the slider is in a first position, the connectors are positioned in the openings. The slider is movable to a second position removing the connectors from the openings. A cover is releasably mounted on the chassis so that cover interlock members insert into the openings engaging the connectors in the first position and disengaging from the connectors in the second position.
Abstract:
A method and apparatus is described for mounting a component in a computer chassis. The present embodiment includes an embodiment in which the component is associated with a heat sink. A mounting bracket, including at least one slot, is disposed on a component. At least one fastener affixes the mounting bracket and component to the chassis. In an alternative embodiment, the component can be secured to an interposer plate affixed to the chassis. The plate includes threaded openings for engaging the fasteners. A second supporting means engages the mounting bracket also. In the present embodiment, the second supporting means is a cover including at least one tab. When the cover is coupled with the chassis, the tabs align with and engage the slots of the mounting bracket. A guide is described for aligning an electrical connector of the component with a corresponding connector of the computer, wherein the connectors make the electrical connection as the component is secured to the chassis.
Abstract:
A screwless hard drive mounting in a computer system includes first and second interconnectable brackets. The first bracket is rigidly mounted on the computer chassis and provides a releasable engagement with the hard drive. The second bracket is movably mounted on the chassis and provides a releasable engagement with the hard drive and also provides a releasable engagement with the first bracket. A resilient member is mounted on the first bracket to releasably engage the hard drive and provide a preload between the hard drive and the first bracket. The resilient member further provides electrical grounding and vibration damping.
Abstract:
Apparatus and methods for integrated circuit (IC) design, including management of the configuration, design parameters, and functionality of a design in which custom instructions or other design elements may be controlled by the designer. In one exemplary embodiment, a computer program rendered in an object-oriented language implementing the aforementioned methods for designing user-customized digital processors is disclosed. Design iteration, component encapsulation, use of human-readable file formats, extensible dynamic GUIs and tool sets, and other features are employed to enhance the functionality and accessibility of the program. Components within the design environment comprise encapsulated objects which contain information relating to interfaces with other components in the design, hierarchy, and other facets of the design process.
Abstract:
A remotely-operated selective fracing system and valve. The valve comprises a casing with at least one casing hole; an inner sleeve nested within the casing and having at least one sleeve hole alignable with the at least one casing hole; actuator means engagable with the inner sleeve for moving the inner sleeve relative to the casing to selectively align the at least one sleeve hole with the at least one casing hole; and receiver means electrically connected to the actuator means and having a sensor for detecting a seismic or electromagnetic signal generated by a remote source. The system further includes source means for generating an acoustical signal receivable by the receiver means.
Abstract:
A fuel cut-off control system (12) for a vehicle (10) is provided. This system (12) includes one or more crash sensors (24) for detecting a fuel cut-off event and for generating a crash signal. These sensors (24) are coupled to a controller (26) and are utilized for transmitting the crash signal thereto. This controller (26) is coupled to a fuel supply system (14) and is intended to temporarily disable the fuel supply system (14) when the controller (26) receives the crash signal. The controller (26) is also coupled to an indicator mechanism (28) and is intended to transmit a cut-off notification signal to the indicator mechanism (28). This indicator mechanism (28) can then display a cut-off notification message to an occupant of the vehicle (10). Finally, the controller (26) also has a reset mechanism (30) coupled thereto. This reset mechanism (30) is intended to be manually operated by the occupant for the purpose of returning the fuel supply system (14) to an operational condition.
Abstract:
A computer system includes a chassis, a microprocessor mounted in the chassis, an input coupled to provide input to the microprocessor, a mass storage coupled to the microprocessor, a display coupled to the microprocessor by a video controller, and a memory coupled to provide storage to facilitate execution of computer programs by the microprocessor. The chassis includes an elongated channel guide having openings formed therein. A slider member is movably mounted within the guide on the chassis. The slider member has a plurality of connectors thereon which are movable therewith. The connectors are positioned in the openings in the guide in response to the slider member being in a first position. The connectors are removed from the openings in response to the slider member being in a second position and an engagement member on one end of the slider member engaged with a resilient release device attached to the chassis. A cover is mounted in the chassis. The cover has interlock members for insertion into the openings and engagement with the connectors in the first position and disengagement from the connectors in the second position.
Abstract:
A computer system includes a chassis and an access panel mounted on the chassis. The panel includes multiple spaced apart interlocks for mounting the panel on the chassis. A latch is operably connected to the chassis to engage and release the interlocks. The latch includes a main body, a latch member extending from each opposite end of the body for engagement with the interlocks, a single point pressure member and a pair of cantilevered support members extending from the single point pressure member. The support members include extensions for engaging the chassis and retaining the single point pressure member and each latch member in a raised position relative to the chassis for engagement with the interlocks. The application of pressure to the single point pressure member, moves the device to release the latches out of engagement with the interlocks.