Abstract:
A network includes at least two nodes that employ a routing protocol to communicate across a network. One of the nodes is a parent node and another of the nodes is a child node of the parent node. An address generator assigns a unique network address to the child node by appending an address value of a number of bits to a parent address of the parent node to create the unique network address for the child node.
Abstract:
A system and method for optimizing power consumption of energy harvesting nodes in a wireless sensor network. In one embodiment, a system includes a network coordinator. The network coordinator includes a wireless transceiver and a controller. The wireless transceiver is configured to provide access to the wireless sensor network. The controller is configured to determine whether a wireless device that is wirelessly communicating with the network coordinator is powered via energy harvesting. The controller is also configured to schedule, based on a determination that the wireless device is powered via energy harvesting, the wireless device to communicate via the wireless sensor network using a priority timeslot of a superframe of the wireless sensor network. The priority timeslot is a timeslot occurring in an initial portion of the superframe.
Abstract:
A system and method for optimizing power consumption of energy harvesting nodes in a wireless sensor network. In one embodiment, a system includes a network coordinator. The network coordinator includes a wireless transceiver and a controller. The wireless transceiver is configured to provide access to the wireless sensor network. The controller is configured to determine whether a wireless device that is wirelessly communicating with the network coordinator is powered via energy harvesting. The controller is also configured to schedule, based on a determination that the wireless device is powered via energy harvesting, the wireless device to communicate via the wireless sensor network using a priority timeslot of a superframe of the wireless sensor network. The priority timeslot is a timeslot occurring in an initial portion of the superframe.
Abstract:
A system and method for detecting and correcting bit errors in received packets is disclosed. The presence of bit errors in a received packet are detected using CRC bits carried in the received packet. One or more erroneous bits may be identified in a header of the packet. The erroneous bits are corrected by setting the erroneous bits to match the expected bit settings. The corrected packet is then error-checked using the CRC bits. Errors may be detected in two sequential packets where a second packet is a retransmission of a first packet. Differing bits are identified in the two sequential packets. A packet is modified to include additional combinations of the differing bits and then error-checked with each combination of the differing bits. If a modified packet passes error checking, then process the modified packet.
Abstract:
A method of transmitting association requests in a wireless sensor network includes transmitting an association request from a leaf node to an intermediate node. The method further includes transmitting the association request from the intermediate node during one of either a shared time slot or a dedicated time slot in response to at least one of the timing of dedicated time slots and data collision rates during shared time slots.
Abstract:
Transmission on a shared wireless communication channel is contended for by selecting one of a predetermined plurality of dedicated channel sensing intervals, and then performing channel sensing relative to the channel during the selected channel sensing interval. A transmission is sent on the channel in response to a determination that the channel is idle.
Abstract:
Disclosed examples include methods and network devices for communicating in a wireless network, in which the device generates frequency hopping sequence y(j) having a prime number sequence length p, using cyclotomic classes in a field of p or using a baby-step giant-step algorithm, where y(0)=p−1 and the remaining sequence values y(j)=logα(j) mod (p−1). In certain examples, α=2 and the sequence is generated without solving logarithms using one or more algorithms to conserve memory and processing complexity for low power wireless sensors or other IEEE 802.15.4e based networks using Time-Slotted Channel Hopping (TSCH) communications.
Abstract:
A device may be coupled to a time slot based communication system and receive a timing beacon packet that is broadcast in a time slot of the communication system at a periodic rate, in which the network uses a time slotted channel hopping protocol of sequential frames each having a plurality of time slots. The device may synchronize its time base to the timing beacon. The device may calculate a sleep time corresponding to a number of time slots until a next time slot that is scheduled for use by the device and then place the device in a sleep mode. The device may be awakened after the sleep time and operate during the next time slot. The device may repeat the process of calculating a sleep time, going into sleep mode, and waking for operation after the sleep time in order to reduce power consumption.
Abstract:
The white list generator identifies wireless sensor nodes that communicate via a wireless sensor network, to identifies time slots assigned for with each of the identified wireless sensor nodes, and to create and maintain a list of the identified wireless sensor nodes and corresponding time slots. The white list generator provides power control information to power a transceiver for reception of transmissions from each identified wireless sensor node based on the identified time slots corresponding to the identified wireless sensor node provided in the list.
Abstract:
A wireless device includes a wireless transceiver configured to transmit to and receive from nodes in a wireless sensor network (WSN) and control logic coupled to the first wireless transceiver. The wireless transceiver transmits a wireless packet to a node in the WSN based on the transmission coinciding with a break in transmissions for a second wireless network. Based on the wireless transceiver being configured to transmit the wireless packets utilizing time synchronized channel hopping, slot frames for packet transmissions in the WSN are time offset so as not to coincide with transmissions made on the second wireless network. Based on the wireless transceiver being configured to transmit the packets utilizing coordinated sampled listening, wake up sequence transmissions for the WSN are time offset so as not to coincide with the transmissions made on the second wireless network.