Abstract:
A non-invasive epidermal electrochemical sensor device includes an adhesive membrane; a flexible or stretchable substrate disposed over the adhesive membrane; and an anodic electrode assembly disposed over the flexible or stretchable substrate including an iontophoretic electrode. The device includes a cathodic electrode assembly disposed adjacent to the anodic electrode assembly over the flexible or stretchable substrate and includes an iontophoretic electrode. Either the cathodic electrode assembly or the anodic electrode assembly also includes a sensing electrode that includes a working electrode and at least one of a counter electrode or a reference electrode. The iontophoretic electrode in either the anodic electrode assembly or the cathodic electrode assembly that includes the sensing electrode is disposed on the substrate to at least partially encompass the working electrode and the at least one of the counter electrode or the reference electrode. The device includes an electrode interface assembly including independent electrically conductive contacts.
Abstract:
A hearing assistance and/or noise suppression device leverages computing power of an external device with a digital signal processor, such as a special unit that is configured to communicate with a smart device (e.g., a smart phone, smart watch or smart pendant) or a smart phone with a digital signal processor. Methods include having a hearing transducer communicate with and offload computing tasks to an external device with a digital signal processor. Systems include a hearing transducer with transducer circuitry that receives, amplifies and outputs digital signal processed audio from another device. Methods provide self-adjustment and fitting through a touch screen interface, which can be conducted outside of a clinical setting in a real world environment, and method can include remote data collection and communications with clinicians.
Abstract:
A biosensor of the invention is a capacitive noncontact sensor with two sensor channels split into a plurality of physically interdigitated symmetrical electrodes and shield sections. Two capacitive plates are electrically connected to the two sensor channels. The capacitive noncontact sensor is sized and packaged to be worn by a person to place the capacitive plates close to the skin of the person and form first and second channel input capacitors with the skin. A signal reconstruction circuit obtains a bio signal from the first and second channel input capacitors through the electrodes by reconstructing differences in the two sensor channels. The circuit includes different parasitic input capacitance in the two channels to create channel-specific outputs that depend on input coupling capacitance.
Abstract:
A transmitter for a magnetic body area network includes a power oscillator that directly uses a body coil as a resonant element. Shunt transistor circuitry is between the power oscillator and the body coil, the shunt transistor circuitry selectively shunts current from the body coil in response to a data signal provided to the transmitter. Power injection circuitry is synchronized to the power oscillator to selectively inject power into the body coil in response to the data signal. A tuning capacitor array is disposed to tune frequency in the body coil. A frequency-locked-loop responds to a frequency in the body coil and tunes the tuning capacitor array to lock to a carrier frequency. Very high Q coils can be used while achieving high data transmission rates of 5 mbps to 10 mbps. Transmitters and methods are applicable to on-off-key modulation, frequency-shift modulation and amplitude-shift modulation.
Abstract:
A non-invasive epidermal electrochemical sensor device includes an adhesive membrane; a flexible or stretchable substrate disposed over the adhesive membrane; and an anodic electrode assembly disposed over the flexible or stretchable substrate including an iontophoretic electrode. The device includes a cathodic electrode assembly disposed adjacent to the anodic electrode assembly over the flexible or stretchable substrate and includes an iontophoretic electrode. Either the cathodic electrode assembly or the anodic electrode assembly also includes a sensing electrode that includes a working electrode and at least one of a counter electrode or a reference electrode. The iontophoretic electrode in either the anodic electrode assembly or the cathodic electrode assembly that includes the sensing electrode is disposed on the substrate to at least partially encompass the working electrode and the at least one of the counter electrode or the reference electrode. The device includes an electrode interface assembly including independent electrically conductive contacts.
Abstract:
A beam-steering backscatter circuit in an integrated tag device. The circuit includes an antenna array and SP4T reflector array configured to receive and transmit through the antenna array. A baseband phase-shifting module modulates an incident signal based upon tag data to create an output signal and re-radiates the output signal with a controllable angle of direction through the SP4T reflector array. A phase locked loop synchronized with a wake-up receiver provides an intermediate frequency (IF) clock to the baseband phase shifting-module.
Abstract:
An ultra-low-power voltage reference generator in an integrated CMOS circuit includes a regular MOS transistor reference current source connected to a line voltage and a regular MOS transistor resistor between the regular MOS transistor reference current source and ground. A constant with temperature reference voltage VREF is generated from a terminal inter-connecting the regular MOS transistor reference current source and the regular MOS transistor resistor. An ultra-low-power current reference generator receives a reference voltage and generated ultra-low level current from the reference voltage with a temperature compensated gate-leakage array.
Abstract:
A non-invasive epidermal electrochemical sensor device includes an adhesive membrane; a flexible or stretchable substrate disposed over the adhesive membrane; and an anodic electrode assembly disposed over the flexible or stretchable substrate including an iontophoretic electrode. The device includes a cathodic electrode assembly disposed adjacent to the anodic electrode assembly over the flexible or stretchable substrate and includes an iontophoretic electrode. Either the cathodic electrode assembly or the anodic electrode assembly also includes a sensing electrode that includes a working electrode and at least one of a counter electrode or a reference electrode. The iontophoretic electrode in either the anodic electrode assembly or the cathodic electrode assembly that includes the sensing electrode is disposed on the substrate to at least partially encompass the working electrode and the at least one of the counter electrode or the reference electrode. The device includes an electrode interface assembly including independent electrically conductive contacts.
Abstract:
A fast startup power oscillator transmitter includes a transistor pair that drives a resonant circuit including a tunable capacitance. A capacitor array preferably forms the tunable capacitance. A voltage booster activates the capacitor array. A clamped body bias voltage booster can set the body bias voltage of the transistor pair in one circuit. Control circuitry activates the resonant circuit through a triode-mode switch transistor in response to an input in a range of 0.3-0.6V, and preferably while controlling the substrate bias voltage of the transistor pair to increase transconductance of the cross-coupled transistor pair. In a variation, a circuit pushes a top plate voltage of one of the two capacitors to 2VDD and pulls the top plate voltage of the other to zero to give the oscillator an initial condition. In a variation, a shaped pulse drives the transistor pair to switch to a class D oscillator mode, and the triode mode switch transistor is only turned on when the oscillation signal voltage is in the range of 0.3-0.6V.
Abstract:
A DC-DC converter converts voltage from a battery source providing a voltage Vin to a lower level. A four-level transistor stack selectively connects an input voltage and flying capacitor voltages to an output inductor. Stress reduction transistors limit the charging of the flying capacitors to Vin/3. The stress reduction transistors can also limit switching transistor voltages to Vin/3. Freewheel switches can be used to limit ringing in the output inductor.