Abstract:
A method of manufacturing a non-volatile memory semiconductor device includes forming a plurality of memory cells on a non-volatile memory cell area of a semiconductor substrate, and forming a conductive layer over the plurality of memory cells. A first planarization layer of a planarization material having a viscosity of less than about 1.2 centipoise is formed over the plurality of memory cells. A planarization operation is performed on the first planarization layer and the conductive layer, thereby removing an upper region of the first planarization layer and an upper region of the conductive layer. Portions of a lower region of the conductive layer are completely removed between the memory cells.
Abstract:
Various embodiments of the present application are directed towards an integrated memory chip with an enhanced device-region layout for reduced leakage current and an enlarged word-line etch process window (e.g., enhanced word-line etch resiliency). In some embodiments, the integrated memory chip comprises a substrate, a control gate, a word line, and an isolation structure. The substrate comprises a first source/drain region. The control gate and the word line are on the substrate. The word line is between and borders the first source/drain region and the control gate and is elongated along a length of the word line. The isolation structure extends into the substrate and has a first isolation-structure sidewall. The first isolation-structure sidewall extends laterally along the length of the word line and underlies the word line.
Abstract:
Various embodiments of the present application are directed towards an integrated memory chip with an enhanced device-region layout for reduced leakage current and an enlarged word-line etch process window (e.g., enhanced word-line etch resiliency). In some embodiments, the integrated memory chip comprises a substrate, a control gate, a word line, and an isolation structure. The substrate comprises a first source/drain region. The control gate and the word line are on the substrate. The word line is between and borders the first source/drain region and the control gate and is elongated along a length of the word line. The isolation structure extends into the substrate and has a first isolation-structure sidewall. The first isolation-structure sidewall extends laterally along the length of the word line and underlies the word line.
Abstract:
In some embodiments, a method for forming a semiconductor device is provided. The method includes forming a pad stack over a semiconductor substrate, where the pad stack includes a lower pad layer and an upper pad layer. An isolation structure having a pair of isolation segments separated in a first direction by the pad stack is formed in the semiconductor substrate. The upper pad is removed to form an opening, where the isolation segments respectively have opposing sidewalls in the opening that slant at a first angle. A first etch is performed that partially removes the lower pad layer and isolation segments in the opening so the opposing sidewalls slant at a second angle greater than the first angle. A second etch is performed to round the opposing sidewalls and remove the lower pad layer from the opening. A floating gate is formed in the opening.
Abstract:
A semiconductor device includes a non-volatile memory and a logic circuit. The non-volatile memory includes a stacked structure comprising a first insulating layer, a floating gate, a second insulating layer, a control gate and a third insulating layer stacked in this order from a substrate; an erase gate line; and a word line. The logic circuit includes a field effect transistor comprising a gate electrode. The word line includes a protrusion, and a height of the protrusion from the substrate is higher than a height of the erase gate line from the substrate. The word line and the gate electrode are formed of polysilicon.
Abstract:
A semiconductor structure of a split gate flash memory cell is provided. The semiconductor structure includes a semiconductor substrate that includes a first source/drain region and a second source/drain region. The semiconductor structure further includes an erase gate located over the first source/drain region, and a word line and a floating gate located over the semiconductor substrate between the first and second source/drain regions. The floating gate is arranged between the word line and the erase gate. Further, the floating gate includes a pair of protrusions extending vertically up from a top surface of the floating gate and arranged on opposing sides, respectively, of the floating gate. A method of manufacturing the semiconductor structure using a high selectively etch recipe, such as an etch recipe comprised of primarily hydrogen bromide (HBr) and oxygen, is also provided.
Abstract:
Some embodiments of the present disclosure relates to an architecture to create split gate flash memory cell that has lower common source (CS) resistance and a reduced cell size by utilizing a buried conductive common source structure. A two-step etch process is carried out to create a recessed path between two split gate flash memory cells. A single ion implantation to form the common source also forms a conductive path beneath the STI region that connects two split gate flash memory cells and provide potential coupling during programming and erasing and thus electrically connect the common sources of memory cells along a direction that forms a CS line. The architecture contains no OD along the source line between the cells, thus eliminating the effects of CS rounding and CS resistance, resulting in a reduced space between cells in an array. Hence, this particular architecture reduces the resistance and the buried conductive path between several cells in an array suppresses the area over head.