Source/drain contact spacers and methods of forming same

    公开(公告)号:US11410877B2

    公开(公告)日:2022-08-09

    申请号:US17078677

    申请日:2020-10-23

    Inventor: Xusheng Wu

    Abstract: Source/drain contact spacers for improving integrated circuit device performance and methods of forming such are disclosed herein. An exemplary method includes etching an interlayer dielectric (ILD) layer to form a source/drain contact opening that exposes a contact etch stop layer (CESL) disposed over a source/drain feature, depositing a source/drain contact spacer layer that partially fills the source/drain contact opening and covers the ILD layer and the exposed CESL, and etching the source/drain contact spacer layer and the CESL to extend the source/drain contact opening to expose the source/drain feature. The etching forms source/drain contact spacers. The method further includes forming a source/drain contact to the exposed source/drain feature in the extended source/drain contact opening. The source/drain contact is formed over the source/drain contact spacers and fills the extended source/drain contact opening. A silicide feature can be formed over the exposed source/drain feature before forming the source/drain contact.

    Air gap seal for interconnect air gap and method of fabricating thereof

    公开(公告)号:US11328982B2

    公开(公告)日:2022-05-10

    申请号:US16817111

    申请日:2020-03-12

    Abstract: Interconnects that facilitate reduced capacitance and/or resistance and corresponding techniques for forming the interconnects are disclosed herein. An exemplary interconnect is disposed in an insulating layer. The interconnect has a metal contact, a contact isolation layer surrounding sidewalls of the metal contact, and an air gap disposed between the contact isolation layer and the insulating layer. An air gap seal for the air gap has a first portion disposed over a top surface of the contact isolation layer, but not disposed on a top surface of the insulating layer, and a second portion disposed between the contact isolation layer and the insulating layer, such that the second portion surrounds a top portion of sidewalls of the metal contact. The air gap seal may include amorphous silicon and/or silicon oxide. The contact isolation layer may include silicon nitride. The insulating layer may include silicon oxide.

    Transistor structure and method with strain effect

    公开(公告)号:US11094821B2

    公开(公告)日:2021-08-17

    申请号:US16573898

    申请日:2019-09-17

    Abstract: The present disclosure provides a method that includes forming a gate stack on a semiconductor substrate; forming an etch stop layer on the gate stack and the semiconductor substrate; depositing a dielectric liner layer on the etch stop layer; performing an anisotropic etch to selectively remove portions of the dielectric liner layer such that the etch stop layer is exposed on top surfaces of the gate stack and the semiconductor substrate; depositing a silicon layer selectively on exposed surfaces of the etch stop layer; depositing an inter-layer dielectric (ILD) layer on the gate stack and the semiconductor substrate; and performing an anneal to oxidize the silicon layer, thereby generating a compressive stress to a channel region underlying the gate stack.

    Source/Drain Contact Spacers and Methods of Forming Same

    公开(公告)号:US20200035549A1

    公开(公告)日:2020-01-30

    申请号:US16217676

    申请日:2018-12-12

    Inventor: Xusheng Wu

    Abstract: Source/drain contact spacers for improving integrated circuit device performance and methods of forming such are disclosed herein. An exemplary method includes etching an interlevel dielectric (ILD) layer to form a source/drain contact opening that exposes a contact etch stop layer (CESL) disposed over a source/drain feature, depositing a source/drain contact spacer layer that partially fills the source/drain contact opening and covers the ILD layer and the exposed CESL, and etching the source/drain contact spacer layer and the CESL to extend the source/drain contact opening to expose the source/drain feature. The etching forms source/drain contact spacers. The method further includes forming a source/drain contact to the exposed source/drain feature in the extended source/drain contact opening. The source/drain contact is formed over the source/drain contact spacers and fills the extended source/drain contact opening. A silicide feature can be formed over the exposed source/drain feature before forming the source/drain contact.

    SEMICONDUCTOR DEVICE WITH AIR GAPS BETWEEN METAL GATES AND METHOD OF FORMING THE SAME

    公开(公告)号:US20240387281A1

    公开(公告)日:2024-11-21

    申请号:US18787051

    申请日:2024-07-29

    Abstract: Semiconductor device and the manufacturing method thereof are disclosed herein. An exemplary semiconductor device comprises a first semiconductor fin and a second semiconductor fin formed over a substrate, wherein lower portions of the first semiconductor fin and the second semiconductor fin are separated by an isolation structure; a first gate stack formed over the first semiconductor fin and a second gate stack formed over the second semiconductor fin; and a separation feature separating the first gate stack and the second gate stack, wherein the separation feature includes a first dielectric layer and a second dielectric layer with an air gap defined therebetween, and a bottom portion of the separation feature being inserted into the isolation structure.

    Semiconductor device with S/D bottom isolation and methods of forming the same

    公开(公告)号:US12148669B2

    公开(公告)日:2024-11-19

    申请号:US18524527

    申请日:2023-11-30

    Abstract: Semiconductor device and the manufacturing method thereof are disclosed. An exemplary semiconductor device comprises first semiconductor stack over a substrate, wherein the first semiconductor stack includes first semiconductor layers separated from each other and stacked up along a direction substantially perpendicular to a top surface of the substrate; second semiconductor stack over the substrate, wherein the second semiconductor stack includes second semiconductor layers separated from each other and stacked up along the direction substantially perpendicular to the top surface of the substrate; inner spacers between edge portions of the first semiconductor layers and between edge portions of the second semiconductor layers; and a bulk source/drain (S/D) feature between the first semiconductor stack and the second semiconductor stack, wherein the bulk S/D feature is separated from the substrate by a first air gap, and the bulk S/D feature is separated from the inner spacers by second air gaps.

Patent Agency Ranking