Abstract:
A leg includes: two semiconductor device groups connected in series and a division current is generated in a current which flows in the semiconductor device group between elements in the semiconductor device groups, a current sensor which detects a current which flows in the semiconductor device group, a voltage command generation unit which calculates a voltage command value to be outputted, a voltage drop calculating unit which calculates a voltage drop of the semiconductor device group by using a current value which is detected by the current sensor and voltage drop characteristics including a division characteristic of the semiconductor device group, and a switching control unit which corrects a voltage command value which is generated by the voltage command generation unit by using the voltage drop which is calculated so as to control ON/OFF of the switching element.
Abstract:
A recording apparatus includes a recording head, a roller configured to convey a recording medium, an acquisition unit configured to acquire information about a conveyance amount for conveying the recording medium per a predetermined rotation amount of the roller, a recording timing generation unit configured to generate a plurality of timing signals for performing recording for one raster line according to a rotation of the roller during one rotation thereof, and a drive signal generation unit configured to generate a drive reference signal for performing the recording for the one raster line on the recording medium at a predetermined interval based on the conveyance amount information and the timing signal.
Abstract:
A printing apparatus includes a plurality of inkjet print heads to which humidified air is supplied to retain the humidity in the print heads. Ink colors for the plurality of heads are arranged in a sequence corresponding to ink characteristics. The plurality of print heads are arranged in a sequence such that a print head configured to eject ink characterized by having a larger amount of volatile components evaporated within a predetermined time is located in a more upstream area.
Abstract:
An inverter device includes a converter circuit that rectifies a first alternating current output from a power supply to generate a rectified current, a capacitor that stores therein the rectified current and outputs a direct current based on the rectified current, and an inverter circuit that converts the direct current into a second alternating current for driving a load. Moreover, a voltage control unit generates and outputs, during a period when any one of an instantaneous power cut and an instantaneous voltage drop occurs in the power supply, a first current command based on a voltage of the capacitor and a second current command; and a current control unit generates and outputs, based on the first current command, the second current command for controlling the inverter circuit to output the second alternating current.
Abstract:
The object is to effectively reduce the resonant current flowing inside a converter unit and an inverter unit in a power conversion apparatus for an electric vehicle. The power conversion apparatus includes a converter unit that converts an alternating-current power into a direct-current power, an inverter unit that converts the direct-current power into an intended alternating-current power and supplies the intended alternating-current power to an electric motor that drives an electric vehicle, a housing that accommodates the converter unit and the inverter unit and a part of which is connected to ground, and a magnetic core that is disposed inside the housing and that suppresses the resonant current flowing between the converter unit and the inverter unit.
Abstract:
A mobile terminal apparatus requests a character be displayed which is assigned to a first key upon being pushed, and if operated continuously for a time span that exceeds a predetermined time, requests a next character be displayed which is assigned to the first key instead of the character assigned to the first key and currently being displayed, if the time span exceeds the predetermined time and the character assigned to the first key and currently being displayed is a special character that has another variation, changes the character to a character of the another variation, and, when the time span exceeds the predetermined time and the character assigned to the first key and currently being displayed is not a special character, requests a new character be displayed right next to the character which is currently being displayed.
Abstract:
A double pipe exhaust manifold includes an inner pipe, an outer pipe formed in a cylindrical shape by joining at least one side edge thereof by welding, a space retaining member disposed in an annular space defined between the inner pipe and the outer pipe, a connection pipe connecting to a exhaust gas recirculation valve, and a mesh ring. Opening holes are formed in the inner pipe and the outer pipe so that the opening holes are opposed to each in a radial direction of the pipes. The connection pipe is connected to the opening hole of the outer pipe. The mesh ring is interposed between the inner pipe and the outer pipe in a state that the mesh ring plugs an annular opening part defined between opening edges of the opening holes.
Abstract:
To protect a plastic intake manifold of an internal combstion engine from heat possessed by exhaust gas recirculation gas, a cooling device is arranged between the plastic intake manifold and an exhaust gas recirculation valve. The cooling device cools the exhaust gas recirculation gas by means of a coolant. A gas discharge part of the cooling device constitutes a pipe portion which penetrates through an exhaust gas inlet hole of the intake manifold keeping a given space between an outer wall of the pipe portion and an inner wall of the exhaust gas inlet hole. The pipe portion may be a leading end portion of an exhaust gas recirculation pipe extending from an exhaust system of the engine.
Abstract:
An intake manifold of a multi-cylinder engine comprises a lower branch and an upper branch both having an identical number of pipe elements. One end of the lower branch is connected to a plurality of intake ports of an engine cylinder head, and at the other free end, the pipe elements are arranged in a row. The upper branch overhangs one side of the cylinder head. One end of the upper branch is connected to a collector disposed above the cylinder head, and at the other free end, the pipe elements are arranged in a row. Flanges are formed around the pipe elements at the free ends of these branches. First holes are provided at positions nearby the two ends of the row. Second holes are formed on an edge of the flanges, these holes being offset from the line joining the first holes on the opposite side to the aforesaid side of the cylinder head. A sealing member is inserted between the flanges, and the flanges are joined tightly together by bolts via these holes. Ample support and sealtightness resistant to vibration are thereby obtained by this construction.
Abstract:
A recording apparatus includes a recording head, a roller configured to convey a recording medium, an acquisition unit configured to acquire information about a conveyance amount for conveying the recording medium per a predetermined rotation amount of the roller, a recording timing generation unit configured to generate a plurality of timing signals for performing recording for one raster line according to a rotation of the roller during one rotation thereof, and a drive signal generation unit configured to generate a drive reference signal for performing the recording for the one raster line on the recording medium at a predetermined interval based on the conveyance amount information and the timing signal.