摘要:
Local losses of material of transparent electrodes, in a plasma display panel including transparent electrodes, bus electrodes and, a dielectric layer covering these electrodes, are prevented by using a plasma display panel according to the present invention. The plasma display panel is formed on at least one substrate of a pair of substrates provided opposite each other via a discharge space. An element, which is a main element of the bus electrode composition, is included in the composition of the dielectric layer. Since the main element of the bus electrode is included in the dielectric layer, local losses of the transparent electrode can be prevented even through the high temperature baking process of the dielectric layer. A preferred choice as the main element of the bus electrode composition is copper, but other elements are also suitable and will perform acceptably.
摘要:
A plasma display panel has a first substrate, a plurality of address electrodes disposed on the first substrate, a first dielectric layer disposed on the first substrate in covering relation to the address electrodes, a second substrate, a plurality of scan electrodes disposed on the second substrate in a direction transverse to the address electrodes, a second dielectric layer disposed on the second substrate in covering relation to the scan electrodes. The first substrate and the second substrate are disposed in confronting relation to each other with discharge spaces defined therebetween. The first dielectric layer contains electrically conductive particles mixed therewith. The electrically conductive particles make the first dielectric layer electrically conductive in its transverse direction to allow charges stored on the first dielectric layer to leak to the address electrodes for thereby reducing the frequency of random discharges.
摘要:
The present invention relates to a plasma display panel comprising transparent electrodes and a dielectric layer covering said transparent electrodes on at least one substrate of a pair of substrates facing each other with a discharge space therebetween, the main constituent of the transparent electrodes is included in the dielectric layer. Further, the main constituent of the transparent electrode is indium oxide and indium oxide is included in the dielectric layer. By including the main constituent of the transparent electrodes in the dielectric layer, it is believed that the drop in conductivity caused by diffusion of the dielectric substance in the transparent electrodes during high-temperature processing is prevented.
摘要:
Local losses of material of transparent electrodes, in a plasma display panel including transparent electrodes, bus electrodes and, a dielectric layer covering these electrodes, are prevented by using a plasma display panel according to the present invention. The plasma display panel is formed on at least one substrate of a pair of substrates provided opposite each other via a discharge space. An element, which is a main element of the bus electrode composition, is included in the composition of the dielectric layer. Since the main element of the bus electrode is included in the dielectric layer, local losses of the transparent electrode can be prevented even through the high temperature baking process of the dielectric layer. A preferred choice as the main element of the bus electrode composition is copper, but other elements are also suitable and will perform acceptably.
摘要:
The present invention relates to a plasma display panel comprising transparent electrodes and a dielectric layer covering said transparent electrodes on at least one substrate of a pair of substrates facing each other with a discharge space therebetween, the main constituent of the transparent electrodes is included in the dielectric layer. Further, the main constituent of the transparent electrode is indium oxide and indium oxide is included in the dielectric layer. By including the main constituent of the transparent electrodes in the dielectric layer, it is believed that the drop in conductivity caused by diffusion of the dielectric substance in the transparent electrodes during high-temperature processing is prevented.
摘要:
A method of manufacturing a panel assembly used to assemble a display panel intends to achieve an alignment-free between barrier ribs and a fluorescent layer and minimize the waste of a barrier rib material for cost reduction. On a support body 51 which is not a substrate, formed are a plurality of walls 281 through 283 made of a fluorescent material that are belt-shaped in plan view arranged in stripes, an electrode material layer a1, and a barrier rib material filling spaces between the walls. The support body 51 and a substrate 21 are coupled so that the barrier rib material faces the substrate. The walls 281 through 283, the electrode material layer a1 and the barrier rib material 291 are transferred in one step to the substrate 21, and thus a panel assembly 20 having barrier ribs 29, electrodes A and fluorescent layers 28R, 28G and 28B is obtained.
摘要:
The present invention relates to a plasma display panel comprising transparent electrodes and a dielectric layer covering said transparent electrodes on at least one substrate of a pair of substrates facing each other with a discharge space therebetween, the main constituent of the transparent electrodes is included in the dielectric layer. Further, the main constituent of the transparent electrode is indium oxide and indium oxide is included in the dielectric layer. By including the main constituent of the transparent electrodes in the dielectric layer, it is believed that the drop in conductivity caused by diffusion of the dielectric substance in the transparent electrodes during high-temperature processing is prevented.
摘要:
A backlight device for a transmissive liquid crystal display device includes a plurality of light sources, including a cold cathode fluorescent lamp and an LED, a liquid crystal panel, and a light guide plate. The light guide plate causes light entering into it through one surface thereof to emerge out of another surface thereof toward the liquid crystal panel. A controller for the backlight device selects at least one of the cold cathode fluorescent lamp and LED, depending on brightness required for the liquid crystal display device and determines, in accordance with the required brightness, the brightness of the selected light source to operate the light source accordingly.
摘要:
A fluorescent layer formation process which comprises dispersing particles of a fluorescent substance and particles of a (meth)acrylic resin as a binder or particles of the fluorescent substance coated with the (meth)acrylic resin in a medium incapable of dissolving the resin therein to prepare a fluorescent paste; applying the fluorescent paste on a fluorescent layer formation surface to form a paste layer; and baking the paste layer at such a temperature that the resin is substantially decomposed or burnt out, thereby to form a fluorescent layer.
摘要:
A novel stimulable phosphor having a high sensitivity to a semiconductor laser as a stimulating light is disclosed, and is represented by the formula:{(M.sup.II X.sup.1.sub.2-2u X.sup.2.sub.2u).sub.1-x-y (M.sup.I X.sup.1.sub.1-v X.sup.2.sub.v).sub.x (M.sup.III X.sup.1.sub.3-3w X.sup.2.sub.3w).sub.y }.sub.1-a A.sub.a :bEu.sup.2+where M.sup.II represents at least one divalent metal such as Ba, Be, Mg or Ca; M.sup.I represents at least one monovalent metal such as Li, Na, K, Rb or Cs; M.sup.II represents at least one divalent metal such as Ba, Be, Mg or Ca; M.sup.III represents at least one trivalent metal such as Sc, La, Y, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Al, Ga, In or Tl; X.sup.1 represents Br or Cl; X.sup.2 represents at least one halogen atom that is different from X.sup.1 ; A represents at least one metal oxide such as BeO, MgO, CaO, SrO, BaO, Al.sub.2 O.sub.3, Y.sub.2 O.sub.3, La.sub.2 O.sub.3, In.sub.2 O.sub.3, Ga.sub.2 O.sub.3, SiO.sub.2, TiO.sub.2, ZrO.sub.2, GeO.sub.2, SnO.sub.2, Nb.sub.2 O.sub.5, Ta.sub.2 O.sub.5 and ThO.sub.2 ; and wherein 0.ltoreq.x+y.ltoreq.0.5; 0.ltoreq.u+v+w.ltoreq.0.1; 0.ltoreq.a.ltoreq.0.1; and 0.ltoreq.b.ltoreq.0.2.