Abstract:
An emulated wireless access point (AP) at a first PMC device (PMC1) establishes a first tunneled direct link setup (TDLS) session between a first station module (STA1) incorporated into the PMC1 and a second station module (STA2) incorporated into a second PMC device (PMC2). Following establishment of the TDLS session, the wireless AP is allowed to sleep; and most infrastructure management duties are handled by the STA1 during the session. PMC device battery charge may be conserved as a result. The emulated wireless AP may also establish a second TDLS link to a third station module (STA3) incorporated into a third PMC device (PMC3). The STA1 may then bridge data traffic flow between the STA2 and the STA3. Such bridging operation may enable communication between two PMC devices otherwise unable to decode data received from the other.
Abstract:
An electronic communication device comprises a first transceiver capable of a bi-directional communication session on a first communication medium; a second transceiver capable of a bi-directional communication session on a second communication medium; and a control logic coupled to the first transceiver and the second transceiver and capable of implementing a convergence layer, wherein the control logic is configured to receive, from the first transceiver, a first signal; and cause, in response to the first signal, data received and transmitted by the first transceiver on the first communication medium as part of a communication session to be received and transmitted instead by the second transceiver on the second communication medium.
Abstract:
A method for communicating in a wireless sensor network (WSN) is described. Using control logic, a first wireless transceiver is caused to transmit a wireless packet to a node in a wireless sensor network. The control logic bases its causing on a transmission coinciding with a break in transmission for a second wireless network, such that the transmission from the first wireless transceiver does not coincide with transmissions made on the second wireless network. Time synchronized channel hopping (TSCH) slot frames for wireless packet transmission in the wireless sensor network are caused to be time offset if the first wireless transceiver is utilizing TSCH. Wake up sequence transmissions for the wireless sensor network are caused to be time offset if the first wireless transceiver is utilizing coordinated sampled listening (CSL).
Abstract:
Apparatus, systems, and methods disclosed herein operate to provide wireless communication between personal mobile communication (PMC) devices. An emulated wireless access point (AP) at a first PMC device (PMC1) establishes a first tunneled direct link setup (TDLS) session between a first station module (STA1) incorporated into the PMC1 and a second station module (STA2) incorporated into a second PMC device (PMC2). Following establishment of the TDLS session, the wireless AP is allowed to sleep; and most infrastructure management duties are handled by the STA1 during the session. PMC device battery charge may be conserved as a result. The emulated wireless AP may also establish a second TDLS link to a third station module (STA3) incorporated into a third PMC device (PMC3). The STA1 may then bridge data traffic flow between the STA2 and the STA3. Such bridging operation may enable communication between two PMC devices otherwise unable to decode data received from the other.
Abstract:
A wireless device that tailors communications based on power parameters of the device. In one embodiment, a wireless device includes an energy source, a power monitor coupled to the energy source, a wireless transceiver, and a traffic controller coupled to the power monitor and the wireless transceiver. The power monitor is configured to measure a parameter of the energy source. The wireless transceiver is configured to wirelessly communicate via a wireless network. The traffic controller is configured to dynamically provide traffic management based on a prediction of wireless device capabilities using the present state of the energy source.
Abstract:
A method for communicating in a wireless sensor network (WSN) is described. Using control logic, a first wireless transceiver is caused to transmit a wireless packet to a node in a wireless sensor network. The control logic bases its causing on a transmission coinciding with a break in transmission for a second wireless network, such that the transmission from the first wireless transceiver does not coincide with transmissions made on the second wireless network. Time synchronized channel hopping (TSCH) slot frames for wireless packet transmission in the wireless sensor network are caused to be time offset if the first wireless transceiver is utilizing TSCH. Wake up sequence transmissions for the wireless sensor network are caused to be time offset if the first wireless transceiver is utilizing coordinated sampled listening (CSL).
Abstract:
A method for implementing a convergence layer. Data is received on a first communication medium by a first transceiver. Data is transmitted on the first communication medium by the first transceiver. A signal is received. Causing, through the convergence layer, by a control logic in response to the signal, the data received and transmitted on the first communication medium as part of a communication session to be received and transmitted instead by a second transceiver on a second communication medium, wherein the convergence layer is configured to conceal from a routing layer at least one of: information related to the first signal, and information related to the data being received and transmitted on the second communication medium.
Abstract:
A system and method for arbitrating channel access in a wireless device including co-located network transceivers are disclosed herein. A wireless device includes a first wireless transceiver and a second wireless transceiver. The first transceiver is configured for operation with a first wireless network. The second transceiver is configured for operation with a second wireless network. The wireless device further includes logic that determines which of the first and second transceivers is enabled to transmit at a given time. The logic causes the first transceiver to transmit a notification signal indicating a time period during which the second transceiver of the wireless device will perform a first wireless transaction, and during which, based on receiving the notification signal, a different wireless device performs a second wireless transaction via the second wireless network without transmitting a notification signal.
Abstract:
A power line communication network includes a plurality of PLC devices. The PLC devices communicate packets over conductors of an electrical power distribution system via a plurality of non-interfering channels. Different ones of the PLC devices are configured to communicate packets via different ones of the non-interfering channels.
Abstract:
A system and method for arbitrating channel access in a wireless device including co-located network transceivers are disclosed herein. A wireless device includes a first wireless transceiver and a second wireless transceiver. The first transceiver is configured for operation with a first wireless network. The second transceiver is configured for operation with a second wireless network. The wireless device further includes logic that determines which of the first and second transceivers is enabled to transmit at a given time. The logic causes the first transceiver to transmit a notification signal indicating a time period during which the second transceiver of the wireless device will perform a first wireless transaction, and during which, based on receiving the notification signal, a different wireless device performs a second wireless transaction via the second wireless network without transmitting a notification signal.