Abstract:
A wireless control system is configured to be trainable to control any number of remotely controlled devices. The system can be configured to gather and learn information relating to a signal transmitted by the original transmitter in a manner that is blind to a user of the system. The system can be designed to learn signals automatically such that fewer steps are necessary for a user to train the system to control a particular remotely controlled device. The system can train to remotely controlled devices in this manner with little or no user action required.
Abstract:
A system for communicating information facilitates wireless communication between electronic devices. The system includes a transceiver provided in a vehicle. The transceiver communicates with an electronic device located external to the transceiver using a Bluetooth communications standard.
Abstract:
A system includes a system bus having data lines, an acknowledge line, an enable line, and a control line, a data storage device, a controller circuit, and an arrangement coupling the system bus, controller circuit and data storage device. The system bus can carry out a data transfer cycle in which the acknowledge, enable and control lines are actuated and the controller obtains and checks data from the data storage device and supplies it to data lines of the bus, and a verify cycle in which the acknowledge and enable lines are actuated and the control line is deactuated and the controller obtains and checks data from the storage device but does not supply it to the bus. The controller circuit is capable of operating in different modes, in one of which it forcibly sets a false error indication in response to the verify cycle. In response to the acknowledge line and enable line being simultaneously actuated while the control line remains deactuated throughout a cycle, an arrangement supplies a special signal to the controller circuit so that the controller circuit interprets the cycle as a data transfer cycle and does not set a false error indication.
Abstract:
Methods and systems for modifying a carrier frequency for a trainable transmitter may include receiving a request to transmit a control signal from the trainable transmitter to a receiver. A transmission of a first control signal may be made using a trained carrier frequency and a control data. At least part of the carrier frequency may be shifted by a frequency increment. A second control signal may then be generated using the carrier frequency shifted by the frequency increment and the control data. The second control signal may then be transmitted.
Abstract:
A method for configuring a transmitter device to transmit a recognized transmission to a receiving device is provided. The method includes transmitting a first transmission and transmitting a second transmission after the first transmission. The method further includes receiving, during the second transmission, a user input signal from an interface for receiving signals from one or more user interface elements. The method further includes storing an attribute associated with the second transmission in a memory device in response to the user input signal.
Abstract:
A transmitter for transmitting an RF control signal to a remote system includes a user input device, a memory and a transmitter circuit. The memory includes control data associated with the remote device. The control data includes a first frequency and a second frequency. The transmitter circuit is coupled to the user input device and memory. In response to a single user input, the transmitter circuit generates a rolling code signal, transmits the rolling code signal at the first frequency for a predetermined amount of time, and, upon expiration of the predetermined about of time, transmits the rolling code signal at the second frequency.
Abstract:
Control systems for mounting in a vehicle and for transmitting a signal to a receiver associated with a device for opening or closing a movable barrier when the receiver receives an authorized signal are provided.
Abstract:
A method for compensating for frequency shifts during transmission of an RF control signal includes receiving a request to enter a transmission mode from a user. A carrier signal having a frequency is generated and the frequency of the carrier signal is measured. The measured frequency of the carrier signal is compared to a desired frequency to determine if there is a difference between the measured frequency and the desired frequency. If there is a difference, it is determined if data is being modulated on the carrier signal. If data is not being modulated on the carrier signal, a correction is applied to the carrier signal frequency.
Abstract:
A system for communicating information is described. The system comprises a radio frequency (RF) transceiver coupled to a vehicle. The transceiver is configured to communicate with a personal digital assistant (PDA) located external to the transceiver using wireless RF signals to transmit information between the transceiver and the PDA.
Abstract:
A control circuit inhibits the CLOCK input to the CPU during power-up to prevent newer submicron CPUs from locking up during a power-up condition. The control circuit also provides a delayed control signal representing that the power supply has stabilized. This delayed control signal is used to consistently control the RESET signal.