Abstract:
A phase modulation circuit to provide at an output terminal an output signal controllably shifted from 0.degree. to 360.degree. relative to an input signal provided at an input terminal includes a first 90.degree. coupler connected between the input terminal and second and third 90.degree. couplers, four gain controllable amplifiers, fourth and fifth 90.degree. couplers and an in phase combiner with its output connected to the output terminal. Two of the amplifiers are connected between the second and fourth couplers. The additional amplifiers are connected between the third and fifth couplers. The fourth and fifth couplers are connected to the inputs of the in-phase combiner. The gain through the various amplifiers is adjusted to control the amount of phase shift through the circuit.
Abstract:
A predistortion circuit for a radio frequency power amplifier which has gain and phase shift characteristics that are non-linear as a function of power level of an RF input signal. The circuit includes a dual gate FET, with a drain coupled to the power amplifier. A modulated RF input signal is applied to an inductive matching network which is coupled to the signal gate of the FET. A modulating envelope detected version of the input signal is applied to a video amplifier which is coupled to the FET control gate. The signal applied to the control gate varies the gain of the FET as a function of input signal to compensate for the non-linear gain characteristic of the power amplifier and in conjunction with the matching network causes a phase change of the signal through the predistortion circuit to compensate for the non-linear phase characteristic of the power amplifier.
Abstract:
A plurality of FET or other amplifiers are connected between respective outputs of an N output port power divider network and respective inputs of an N input power combining network in a variable power amplifier system. A gate bias is selectively supplied to each of the amplifiers which is either at a first value to cause the amplifier to amplify or at a second value to cause the amplifier to be cut off and therefore to not dissipate any DC power. The number of amplifiers receiving the first potential is determinative of the amount of power amplification of the variable power amplifier.
Abstract:
Methods and systems are provided for global server load balancing in a communication network using a global site selector and an application control engine in communication with the global site selector, in which the application control engine notifies the global site selector in response to a state change for a virtual internet protocol (VIP) address. Keepalive methods generally rely on periodically polling VIP addresses to check whether they are in an ONLINE or OFFLINE state. A minimum interval between two keepalives can be as long as 40 seconds, during which, without a mechanism to reflect state change to the load balancer in real time, if a VIP address changes state (e.g., VIP address failure), a customer can experience network outage during the time interval. Embodiments provide a mechanism to reflect, in real time, the current VIP address state to a global server load balancer to reduce failure detection time.
Abstract:
Antigenic isolates and vaccines for Infectious Bursal Disease Virus include variants of the molecular Group 6 family of IBDV isolates, in particular the 28-1 isolate.
Abstract:
A vaccine composition and method which is effective in preventing or ameliorating Avian Influenza Virus infection is set forth herein. The vaccine contains at least two inactivated strains of avian influenza virus, wherein the combined haemoagglutinin (HA) total is at least about 200 HA/dose of the vaccine composition, and wherein each of the strains presents at least about 128 HA/dose, and further wherein one of the strains has the same HA subtype as that of a challenge virus, and wherein at least one of the strains has a different NA subtype than the challenge virus.
Abstract:
The present invention provides live, attenuated Mycoplasma gallisepticum bacteria that exhibit reduced expression of a protein identified as MGA_0621. In certain embodiments, the attenuated bacteria may additionally exhibit reduced expression of one or more proteins selected from the group consisting of pyruvate dehydrogenase, phosphopyruvate hydratase, 2-deoxyribose-5-phosphate aldolase, and ribosomal protein L35, relative to a wild-type M. gallisepticum bacterium. Also provided are vaccines and vaccination methods involving the use of the live, attenuated M. gallisepticum bacteria, and methods for making live attenuated M. gallisepticum bacteria. An exemplary live, attenuated strain of M. gallisepticum is provided, designated MGx+47, which was shown by proteomics analysis to exhibit significantly reduced expression of MGA_0621, and was shown to be safe and effective when administered as a vaccine against M. gallisepticum infection in chickens.
Abstract:
The present invention provides live, attenuated Mycoplasma bacteria that exhibit reduced expression of one or more proteins selected from the group consisting of pyruvate dehydrogenase, phosphopyruvate hydratase, 2-deoxyribose-5-phosphate aldolase, and ribosomal protein L35, relative to a wild-type Mycoplasma bacterium of the same species. Also provided are vaccines and vaccination methods involving the use of the live, attenuated Mycoplasma bacteria, and methods for making live attenuated Mycoplasma bacteria.
Abstract:
The present invention provides methods for inducing cross-protective immunity against virulent strains of P. multocida in animals such as cattle and poultry. The methods of the invention include administering to an animal a mutant P. multocida strain, whereby the mutant P. multocida strain induces cross-protective immunity against one or more virulent P. multocida strains having serotypes that are different from the serotype of the mutant P. multocida strain. The mutant P. multocida strain will preferably contain one or more mutations that cause the cells to be acapsular and/or attenuated. Exemplary mutations include, e.g., mutations that impair the expression of one or more genes in the P. multocida capsule biosynthetic operon (e.g., phyB, phyA, hyaE, hyaD, hyaC, hyaB, hexD, hexC, hexB, and/or hexA).
Abstract:
A vaccine composition and method which is effective in preventing or ameliorating Avian Influenza Virus infection is set forth herein. The vaccine contains at least two inactivated strains of avian influenza virus, wherein the combined hemagglutinin (HA) total is at least about 200 HA/dose of the vaccine composition, and wherein each of the strains presents at least about 128 HA/dose, and further wherein one of the strains has the same HA subtype as that of a challenge virus, and wherein at least one of the strains has a different NA subtype than the challenge virus.