摘要:
A method for forming a transistor having low overlap capacitance by forming a microtrench at the gate edge to reduce effective dielectric constant is described. A gate electrode is provided overlying a gate dielectric layer on a substrate and having a hard mask layer thereover. An oxide layer is formed overlying the substrate. First spacers are formed on sidewalls of the gate electrode and overlying the oxide layer. Source/drain extensions are implanted. Second spacers are formed on the first spacers. Source/drain regions are implanted. A dielectric layer is deposited overlying the gate electrode and the oxide layer and planarized to the hard mask layer whereby the first and second spacers are exposed. The exposed second spacers and underlying oxide layer are removed. The exposed substrate underlying the second spacers is etched into to form a microtrench undercutting the gate oxide layer at an edge of the gate electrode. The microtrench is filled with an epitaxial oxide layer and planarized to the hard mask layer. The dielectric layer is patterned to form third spacers on the epitaxial oxide layer. The microtrench reduces the effective dielectric constant at the overlap between the gate and the source/drain extensions to complete formation of a transistor having low overlap capacitance.
摘要:
A method for forming a gate dielectric having regions with different dielectric constants. A dummy dielectric layer is formed over a semiconductor structure. The dummy dielectric layer is patterned to form a gate opening. A high-K dielectric layer is formed over the dummy dielectric and in the gate opening. A low-K dielectric layer is formed on the high-K dielectric layer. Spacers are formed on the low-K dielectric layer at the edges of the gate opening. The low-K dielectric layer is removed from the bottom of the gate opening between the spacers. The spacers are removed to form a stepped gate opening. The stepped gate opening has both a high-K dielectric layer and a low-K dielectric layer on the sidewalls and at the edges of the bottom of the gate opening and only a high-k dielectric layer in the center of the bottom of the stepped gate opening. A gate electrode is formed in the stepped gate opening.
摘要:
A method for forming a MOSFET having an LDD structure with minimal lateral dopant diffusion is described. A gate electrode is provided overlying a gate dielectric layer on a semiconductor substrate. Dielectric spacers are formed on sidewalls of the gate electrode. Source and drain regions are formed associated with the gate electrode. The gate electrode and source and drain regions are silicided. Thereafter, the spacers are removed to expose the semiconductor substrate. LDD regions are formed using plasma doping in the exposed semiconductor substrate between the source and drain regions and the gate electrode to complete formation of an LDD structure in the fabrication of an integrated circuit device.
摘要:
A method for a T-gate and salicide process that allows narrow bottom gate widths below 0.25 &mgr;m and wide top gate widths to allow silicide gate contacts on the top of the T-gate. A dummy gate composed of an insulating material is formed over the substrate. Then we form LDD regions adjacent to the dummy gate preferably by ion implanting f (I/I) impurity ions into the substrate using the dummy gate as a mask. A pad oxide layer and dielectric layer are formed over the substrate surface. The dielectric layer over the dummy gate is removed preferably by a CMP process. We then remove the dummy gate to form a gate opening exposing the substrate surface. A gate dielectric layer is formed over the substrate surface in the gate opening. We form a polysilicon layer over the dielectric layer and the substrate surface in the gate opening. The polysilicon layer is patterned to form a T-gate. The dielectric layer is removed. We forming source/drain (S/D) regions adjacent to the T-gate by an Ion implant process. A silicide layer is formed over the T-gate and the substrate to form silicide contacts to the SID regions and gate contacts to the T-gate. Then we form a dielectric layer (ILD) over the T-gate and substrate. We form contact opening through the dielectric layer to expose the S/D regions and T-gate. We form contacts to the S/D regions and to the T-gate.
摘要:
An integrated circuit is provided. A gate dielectric and a gate are provided respectively on and over a semiconductor substrate. A junction is formed adjacent the gate dielectric and a shaped spacer is formed around the gate. A spacer is formed under the shaped spacer and a liner is formed under the spacer. A first dielectric layer is formed over the semiconductor substrate, the shaped spacer, the spacer, the liner, and the gate. A second dielectric layer is formed over the first dielectric layer. A local interconnect opening is formed in the second dielectric layer down to the first dielectric layer. The local interconnect opening in the first dielectric layer is opened to expose the junction in the semiconductor substrate and the first gate. The local interconnect openings in the first and second dielectric layers are filled with a conductive material.
摘要:
An improved new process for fabricating multilevel interconnected vertical channels and horizontal channels or tunnels. The method has broad applications in semiconductors, for copper interconnects and inductors, as well as, in the field of bio-sensors for mini- or micro-columns in gas or liquid separation, gas/liquid chromatography, and in capillary separation techniques. In addition, special techniques are described to deposit by atomic layer deposition, ALD, a copper barrier layer and seed layer for electroless copper plating, filling trench and channel or tunnel openings in a type of damascene process, to form copper interconnects and inductors.
摘要:
A method for forming a gate dielectric having regions with different dielectric constants. A low-K dielectric layer is formed over a semiconductor structure. A dummy dielectric layer is formed over the low-K dielectric layer. The dummy dielectric layer and low-K dielectric layer are patterned to form an opening. The dummy dielectric layer is isontropically etched selectively to the low-K dielectric layer to form a stepped gate opening. A high-K dielectric layer is formed over the dummy dielectric and in the stepped gate opening. A gate electrode is formed on the high-K dielectric layer.
摘要:
A method for forming a sub-quarter micron MOSFET having an elevated source/drain structure is described. A gate electrode is formed over a gate dielectric on a semiconductor substrate. Ions are implanted into the semiconductor substrate to form lightly doped regions using the gate electrode as a mask. Thereafter, dielectric spacers are formed on sidewalls of the gate electrode. A polysilicon layer is deposited overlying the semiconductor substrate, gate electrode, and dielectric spacers wherein the polysilicon layer is heavily doped. The polysilicon layer is etched back to leave polysilicon spacers on the dielectric spacers. Dopant is diffused from the polysilicon spacers into the semiconductor substrate to form source and drain regions underlying the polysilicon spacers. The polysilicon spacer on an end of the gate electrode is removed to separate the polysilicon spacers into a source polysilicon spacer and a drain polysilicon spacer thereby completing formation of a MOSFET having an elevated source/drain structure in the fabrication of an integrated circuit device.
摘要:
A method of fabricating an isolated vertical transistor comprising the following steps. A wafer having a first implanted region selected from the group comprising a source region and a drain region is provided. The wafer further includes STI areas on either side of a center transistor area. The wafer is patterned down to the first implanted region to form a vertical pillar within the center transistor area using a patterned hardmask. The vertical pillar having side walls. A pad dielectric layer is formed over the wafer, lining the vertical pillar. A nitride layer is formed over the pad dielectric layer. The structure is patterned and etched through the nitride layer and the pad dielectric layer; and into the wafer within the STI areas to form STI trenches within the wafer. The STI trenches are filled with insulative material to form STIs within STI trenches. The patterned nitride and pad dielectric layers are removed. The patterned hardmask is removed. Gate oxide is grown over the exposed portions of the wafer and the vertical pillar. Spacer gates are formed over the gate oxide lined side walls of the vertical pillar. Spacer gate implants are formed within the spacer gates, and a second implanted region is formed within the vertical pillar selected from the group consisting of a drain region and a source region that is not the same as the first implanted region to complete formation of the isolated vertical transistor.
摘要:
A method for a self aligned TX with elevated source/drain (S/D) regions on an insulated layer (oxide) by forming a trench along side the STI and filling the trench with oxide. STI regions are formed in a substrate. A gate structure is formed. LDD regions are formed adjacent to the gate structure in the substrate. Spacers are formed on the sidewall of the gate structure. We etch S/D trenches between the STI regions and the first spacers. The S/D trenches are filled with a S/D insulating layer. Elevated S/D regions are formed over the S/D insulating layer and the LDD regions. A top isolation layer is formed over the STI regions. The invention builds the raised source/drain (S/D) regions on an insulating layer and reduces junction leakage and hot carrier degradation to gate oxide.